Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(5)2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30871122

RESUMO

Since the first studies of luminescent sensors based on metal organic frameworks (MOFs) about ten years ago, there has been an increased interest in the development of specific sensors towards cations, anions, explosives, small molecules, solvents, etc. However, the detection of toxic compounds related to agro-industry and nuclear activity is noticeably scarce or even non-existent. In this work, we report the synthesis and characterization of luminescent lanthanide-based MOFs (Ln-MOFs) with diverse crystalline architectures obtained by solvothermal methods. The luminescent properties of the lanthanides, and the hypersensitive transitions of Eu3+ (5D0→7F2) and Tb3+ (5D4→7F5) intrinsically found in the obtained MOFs in particular, were evaluated and employed as chemical sensors for agrochemical and cationic species. The limit of detection (LOD) of Tb-PSA MOFs (PSA = 2-phenylsuccinate) was 2.9 ppm for [UO22+] and 5.6 ppm for [Cu2+]. The variations of the 4f⁻4f spectral lines and the quenching/enhancement effects of the Ln-MOFs in the presence of the analytes were fully analyzed and discussed in terms of a combinatorial "host⁻guest" vibrational and "in-silico" interaction studies.

2.
J Pept Sci ; 25(3): e3149, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30746861

RESUMO

Human pathogenic gram-negative bacteria, such as enteropathogenic Escherichia coli (EPEC), rely on type III secretion systems (T3SS) to translocate virulence factors directly into host cells. The coiled-coil domains present in the structural proteins of T3SS are conformed by amphipathic alpha-helical structures that play an important role in the protein-protein interaction and are essential for the assembly of the translocation complex. To investigate the inhibitory capacity of these domains on the T3SS of EPEC, we synthesized peptides between 7 and 34 amino acids based on the coiled-coil domains of proteins that make up this secretion system. This analysis was performed through in vitro hemolysis assays by assessing the reduction of T3SS-dependent red blood cell lysis in the presence of the synthesized peptides. After confirming its inhibitory capacity, we performed molecular modeling assays using combined techniques, docking-molecular dynamic simulations, and quantum-mechanic calculations of the various peptide-protein complexes, to improve the affinity of the peptides to the target proteins selected from T3SS. These techniques allowed us to demonstrate that the peptides with greater inhibitory activity, directed against the coiled-coil domain of the C-terminal region of EspA, present favorable hydrophobic and hydrogen bond molecular interactions. Particularly, the hydrogen bond component is responsible for the stabilization of the peptide-protein complex. This study demonstrates that compounds targeting T3SS from pathogenic bacteria can indeed inhibit bacterial infection by presenting a higher specificity than broad-spectrum antibiotics. In turn, these peptides could be taken as initial structures to design and synthesize new compounds that mimic their inhibitory pharmacophoric pattern.


Assuntos
Antibacterianos/farmacologia , Escherichia coli Enteropatogênica/efeitos dos fármacos , Escherichia coli Enteropatogênica/metabolismo , Peptídeos/farmacologia , Sistemas de Secreção Tipo III/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Dicroísmo Circular , Escherichia coli Enteropatogênica/crescimento & desenvolvimento , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Peptídeos/síntese química , Peptídeos/química , Termodinâmica
3.
J Pept Sci ; 23(3): 236-244, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28150445

RESUMO

Cholinesterases are a family of enzymes that catalyze the hydrolysis of neurotransmitter acetylcholine. There are two types of cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), which differ in their distribution in the body. Currently, cholinesterase inhibitors (ChEI) represent the treatment of choice for Alzheimer's disease (AD). In this paper, we report the synthesis and inhibitory effect on both enzymes of four new peptides structurally related to P1-Hp-1971 (amphibian skin peptide found in our previous work. Sequence: TKPTLLGLPLGAGPAAGPGKR-NH2 ). The bioassay data and cytotoxicity test show that some of the compounds possess a significant AChE and BChE inhibition and no toxic effect. The present work demonstrates that diminution of the size of the original peptide could potentially result in new compounds with significant cholinesterase inhibition activity, although it appears that there is an optimal size for the sequence. We also conducted an exhaustive molecular modeling study to better understand the mechanism of action of these compounds by combining docking techniques with molecular dynamics simulations on BChE. This is the first report about amphibian peptides and the second one of natural peptides with ChE inhibitory activity. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Acetilcolinesterase/química , Proteínas de Anfíbios/química , Butirilcolinesterase/química , Inibidores da Colinesterase/química , Peptídeos/química , Sequência de Aminoácidos , Animais , Anuros , Inibidores da Colinesterase/síntese química , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeos/síntese química , Técnicas de Síntese em Fase Sólida/métodos , Relação Estrutura-Atividade
4.
J Biomol Struct Dyn ; 35(2): 413-426, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26813690

RESUMO

We report here two new small-size peptides acting as modulators of the ß-site APP cleaving enzyme 1 (BACE1) exosite. Ac-YPYFDPL-NH2 and Ac-YPYDIPL-NH2 displayed a moderate but significant inhibitory effect on BACE1. These peptides were obtained from a molecular modeling study. By combining MD simulations with ab initio and DFT calculations, a simple and generally applicable procedure to evaluate the binding energies of small-size peptides interacting with the exosite of the BACE1 is reported here. The structural aspects obtained for the different complexes were analyzed providing a clear picture about the binding interactions of these peptides. These interactions have been investigated within the framework of the density functional theory and the quantum theory of atoms in molecules using a reduced model. Although the approach used here was traditionally applied to the study of noncovalent interactions in small molecules complexes in gas phase, we show, through in this work, that this methodology is also a very powerful tool for the study of biomolecular complexes, providing a very detailed description of the binding event of peptides modulators at the exosite of BACE1.


Assuntos
Secretases da Proteína Precursora do Amiloide/química , Ácido Aspártico Endopeptidases/química , Sítios de Ligação , Desenho de Fármacos , Modelos Moleculares , Peptídeos/química , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Domínios e Motivos de Interação entre Proteínas , Relação Quantitativa Estrutura-Atividade
6.
Protein Sci ; 13(11): 2939-48, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15498939

RESUMO

The position dependence of the (13)C chemical shifts was investigated at the density functional level for alpha-helical model peptides represented by the sequence Ac-(Ala)(i)-X-(Ala)(j)-NH(2), where X represents any of the 20 naturally occurring amino acids, with 0 < or = i < or = 8 and i + j = 8. Adoption of the locally dense basis approach for the quantum chemical calculations enabled us to reduce the length of the chemical-shift calculations while maintaining good accuracy of the results. For the 20 naturally occurring amino acids in alpha-helices, there is (1) significant variability of the computed (13)C shielding as a function of both the guest residue (X) and the position along the sequence; for example, at the N terminus, the (13)C(alpha) and (13)C(beta) shieldings exhibit a uniform pattern of variation with respect to both the central or the C-terminal positions; (2) good agreement between computed and observed (13)C(alpha) and (13)C(beta) chemical shifts in the interior of the helix, with correlation coefficients of 0.98 and 0.99, respectively; for (13)C(alpha) chemical shifts, computed in the middle of the helix, only five residues, namely Asn, Asp, Ser, Thr, and Leu, exhibit chemical shifts beyond the observed standard deviation; and (3) better agreement for four of these residues (Asn, Asp, Ser, and Thr) only for the computed values of the (13)C(alpha) chemical shifts at the N terminus. The results indicate that (13)C(beta), but not (13)C(beta), chemical shifts are sensitive enough to reflect the propensities of some amino acids for specific positions within an alpha-helix, relative to the N and C termini of peptides and proteins.


Assuntos
Sequência de Aminoácidos , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Aminoácidos , Isótopos de Carbono , Modelos Teóricos , Estrutura Secundária de Proteína
7.
Biophys J ; 86(2): 731-42, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14747311

RESUMO

Interest centers here on whether a polyproline II helix can propagate through adjacent non-proline residues, and on shedding light on recent experimental observations suggesting the presence of significant PP(II) structure in a short alanine-based peptide with no proline in the sequence. For this purpose, we explored the formation of polyproline II helices in proline-rich peptides with the sequences Ac-(Pro)(3)-X-(Pro)(3)-Gly-Tyr-NH(2), with X = Pro (PPP), Ala (PAP), Gln (PQP), Gly (PGP), and Val (PVP), and Ac-(Pro)(3)-Ala-Ala-(Pro)(3)-Gly-Tyr-NH(2) (PAAP), by using a theoretical approach that includes a solvent effect as well as cis <--> trans isomerization of the peptide groups and puckering conformations of the pyrrolidine ring of the proline residues. Since (13)C chemical shifts have proven to be useful for identifying secondary-structure preferences in proteins and peptides, and because values of the dihedral angles (phi,psi) are the main determinants of their magnitudes, we have, therefore, computed the Boltzmann-averaged (13)C chemical shifts for the guest residues in the PXP peptide (X = Pro, Ala, Gln, Gly, and Val) with a combination of approaches, involving molecular mechanics, statistical mechanics, and quantum mechanics. In addition, an improved procedure was used to carry out the conformational searches and to compute the solvent polarization effects faster and more accurately than in previous work. The current theoretical work and additional experimental evidence show that, in short proline-rich peptides, alanine decreases the polyproline II helix content. In particular, the theoretical evidence accumulated in this work calls into question the proposal that alanine has a strong preference to adopt conformations in the polyproline II region of the Ramachandran map.


Assuntos
Modelos Químicos , Modelos Moleculares , Peptídeos/química , Prolina/química , Sequência de Aminoácidos , Simulação por Computador , Dados de Sequência Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Solventes/química , Relação Estrutura-Atividade
8.
J Biomol NMR ; 24(3): 245-62, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12522312

RESUMO

NMR studies of the molecular conformations of peptides and proteins rely on a comparison of the relevant spectral parameters with the corresponding values for so-called statistical-coil polypeptides. For this reason, it is necessary to characterize the experimental ensemble of states populated by statistical-coil peptides. Such a characterization, however, has proven to be both difficult and sensitive to changes in many environmental parameters such as solvent composition, temperature, pH, as well as the neighboring amino acids in the sequence. As a consequence, a series of significant discrepancies has been reported for some experimentally observed parameters, such as chemical shifts, or vicinal coupling constants, (3)J(NHalpha), whose values appear to be incompatible with a statistical-coil ensemble. In this work, we report the results of a molecular mechanics study of a series of unblocked tetra- and pentapeptides under different pH conditions. These calculations were carried out with explicit consideration of both the coupling between the process of proton binding/release and conformation adopted by the molecule at a given pH and the contribution of the conformational entropy to the total free energy. Good agreement was found between the calculated and experimentally determined values of the vicinal coupling constant, (3)J(NHalpha), the alpha-proton chemical shift, and the (13)C(alpha) chemical shift. All the evidence accumulated in these theoretical calculations helps to rationalize some of the unsettled anomalies observed experimentally, and to provide an understanding of the effect of pH and amino acid sequence on the conformational preferences of statistical-coil peptides.


Assuntos
Modelos Estatísticos , Modelos Teóricos , Oligopeptídeos/química , Aminoácidos/química , Isótopos de Carbono/química , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Soluções , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA