Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
NPJ Precis Oncol ; 7(1): 119, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964078

RESUMO

Brain surgery is one of the most common and effective treatments for brain tumour. However, neurosurgeons face the challenge of determining the boundaries of the tumour to achieve maximum resection, while avoiding damage to normal tissue that may cause neurological sequelae to patients. Hyperspectral (HS) imaging (HSI) has shown remarkable results as a diagnostic tool for tumour detection in different medical applications. In this work, we demonstrate, with a robust k-fold cross-validation approach, that HSI combined with the proposed processing framework is a promising intraoperative tool for in-vivo identification and delineation of brain tumours, including both primary (high-grade and low-grade) and secondary tumours. Analysis of the in-vivo brain database, consisting of 61 HS images from 34 different patients, achieve a highest median macro F1-Score result of 70.2 ± 7.9% on the test set using both spectral and spatial information. Here, we provide a benchmark based on machine learning for further developments in the field of in-vivo brain tumour detection and delineation using hyperspectral imaging to be used as a real-time decision support tool during neurosurgical workflows.

2.
Opt Express ; 31(8): 12261-12279, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37157389

RESUMO

Hyperspectral (HS) imaging (HSI) expands the number of channels captured within the electromagnetic spectrum with respect to regular imaging. Thus, microscopic HSI can improve cancer diagnosis by automatic classification of cells. However, homogeneous focus is difficult to achieve in such images, being the aim of this work to automatically quantify their focus for further image correction. A HS image database for focus assessment was captured. Subjective scores of image focus were obtained from 24 subjects and then correlated to state-of-the-art methods. Maximum Local Variation, Fast Image Sharpness block-based Method and Local Phase Coherence algorithms provided the best correlation results. With respect to execution time, LPC was the fastest.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA