Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791128

RESUMO

In endothelial cells, miR-148a-3p is involved in several pathological pathways, including chronic inflammatory conditions. However, the molecular mechanism of miR-148a-3p in endothelial inflammatory states is, to date, not fully elucidated. To this end, we investigated the involvement of miR-148a-3p in mitochondrial dysfunction and cell death pathways in human aortic endothelial cells (teloHAECs) treated with interleukin-6 (IL-6), a major driver of vascular dysfunction. The results showed that during IL6-activated inflammatory pathways, including increased protein levels of sirtuin 7 (SIRT7) (p < 0.01), mitochondrial stress (p < 0.001), and apoptosis (p < 0.01), a decreased expression of miR-148a-3p was observed (p < 0.01). The employment of a miR-148a mimic counteracted the IL-6-induced cytokine release (p < 0.01) and apoptotic cell death (p < 0.01), and ameliorated mitochondria redox homeostasis and respiration (p < 0.01). The targeted relationship between miR-148a-3p and SIRT7 was predicted by a bioinformatics database analysis and validated via the dual-luciferase reporter assay. Mechanistically, miR-148a-3p targets the 3' untranslated regions of SIRT7 mRNA, downregulating its expression (p < 0.01). Herein, these in vitro results support the role of the miR-148a-3p/SIRT7 axis in counteracting mitochondrial damage and apoptosis during endothelial inflammation, unveiling a novel target for future strategies to prevent endothelial dysfunction.


Assuntos
Apoptose , Células Endoteliais , Inflamação , MicroRNAs , Humanos , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Interleucina-6/metabolismo , Interleucina-6/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , Sirtuínas/metabolismo , Sirtuínas/genética
2.
Cell Mol Biol Lett ; 29(1): 80, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811901

RESUMO

BACKGROUND: Sodium-glucose transporter 2 (SGLT2) inhibitors (iSGLT2) are approved medications for type 2 diabetes. Recent studies indicate that iSGLT2 inhibit the growth of some cancer cells. However, the mechanism(s) remains to be fully elucidated. METHODS: The SGLT2 levels were determined in normal colon CCD 841 CoN and, HCT 116, HT-29, SW480 and LoVo colorectal cancer (CRC) cell lines by quantitative real-time PCR and western blot. The effect of iSGLT2 canagliflozin on cell proliferation was examined using CCK-8, as its role on CRC cells metabolism and tumorigenesis has been evaluated by XF HS Seahorse Bioanalyzer and flow cytometric analyses. Transient gene silencing experiments and analysis of protein-protein interaction network were conducted to evaluate the SGLT2 molecular targets in CRC cells. RESULTS: Data showed that the treatment with iSGLT2 (50 µM) for 72 h induced cell cycle arrest (p < 0.001), impaired glucose and energetic metabolism (p < 0.001), promoted apoptotic cell death and ER stress flowing into autophagy (p < 0.001) in HCT 116 and HT-29 cells. These cellular events were accompanied by sirtuin 3 (SIRT3) upregulation (p < 0.01), as also supported by SIRT3 transient silencing experiments resulting in the attenuation of the effects of iSGLT2 on the cellular metabolic/energetic alterations and the induction of programmed cell death. The identification and validation of dipeptidyl peptidase 4 (DPP4) as potential common target of SGLT2 and SIRT3 were also assessed. CONCLUSIONS: These results deepened knowledge on the iSGLT2 contribution in limiting CRC tumorigenesis unveiling the SGLT2/SIRT3 axis in the cytotoxic mechanisms.


Assuntos
Apoptose , Proliferação de Células , Neoplasias Colorretais , Estresse do Retículo Endoplasmático , Mitocôndrias , Inibidores do Transportador 2 de Sódio-Glicose , Transportador 2 de Glucose-Sódio , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transportador 2 de Glucose-Sódio/metabolismo , Transportador 2 de Glucose-Sódio/genética , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Canagliflozina/farmacologia , Células HT29 , Células HCT116 , Sirtuína 3/metabolismo , Sirtuína 3/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Glucose/metabolismo
3.
Cells ; 13(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38667278

RESUMO

Prediabetes and colorectal cancer (CRC) represent compelling health burdens responsible for high mortality and morbidity rates, sharing several modifiable risk factors. It has been hypothesized that metabolic abnormalities linking prediabetes and CRC are hyperglycemia, hyperinsulinemia, and adipokines imbalance. The chronic stimulation related to these metabolic signatures can favor CRC onset and development, as well as negatively influence CRC prognosis. To date, the growing burden of prediabetes and CRC has generated a global interest in defining their epidemiological and molecular relationships. Therefore, a deeper knowledge of the metabolic impairment determinants is compelling to identify the pathological mechanisms promoting the onset of prediabetes and CRC. In this scenario, this review aims to provide a comprehensive overview on the metabolic alterations of prediabetes and CRC as well as an overview of recent preventive and therapeutic approaches for both diseases, focusing on the role of the metabolic state as a pivotal contributor to consider for the development of future preventive and therapeutic strategies.


Assuntos
Neoplasias Colorretais , Estado Pré-Diabético , Animais , Humanos , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/prevenção & controle , Estado Pré-Diabético/epidemiologia , Estado Pré-Diabético/metabolismo , Estado Pré-Diabético/patologia , Estado Pré-Diabético/prevenção & controle , Fatores de Risco
4.
Nutrients ; 16(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38201989

RESUMO

In the context of nutrient-driven epigenetic alterations, food-derived miRNAs can be absorbed into the circulatory system and organs of recipients, especially humans, and potentially contribute to modulating health and diseases. Evidence suggests that food uptake, by carrying exogenous miRNAs (xenomiRNAs), regulates the individual miRNA profile, modifying the redox homeostasis and inflammatory conditions underlying pathological processes, such as type 2 diabetes mellitus, insulin resistance, metabolic syndrome, and cancer. The capacity of diet to control miRNA levels and the comprehension of the unique characteristics of dietary miRNAs in terms of gene expression regulation show important perspectives as a strategy to control disease susceptibility via epigenetic modifications and refine the clinical outcomes. However, the absorption, stability, availability, and epigenetic roles of dietary miRNAs are intriguing and currently the subject of intense debate; additionally, there is restricted knowledge of their physiological and potential side effects. Within this framework, we provided up-to-date and comprehensive knowledge on dietary miRNAs' potential, discussing the latest advances and controversial issues related to the role of miRNAs in human health and disease as modulators of chronic syndromes.


Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , Humanos , Diabetes Mellitus Tipo 2/genética , Estado Nutricional , Dieta , Epigênese Genética , MicroRNAs/genética
5.
Cancers (Basel) ; 15(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686618

RESUMO

Ferroptosis, an iron-dependent form of cell death, and dysregulated microRNA (miRNA) expression correlate with colorectal cancer (CRC) development and progression. The tumor suppressor ability of miR-148a-3p has been reported for several cancers. Nevertheless, the role of miR-148a-3p in CRC remains largely undetermined. Here, we aim at investigating the molecular mechanisms and regulatory targets of miR-148a-3p in the CRC cell death mechanism(s). To this end, miR-148a-3p expression was evaluated in SW480 and SW620 cells and normal colon epithelial CCD 841 CoN cells with quantitative real-time polymerase chain reaction (qRT-PCR). Data reported a reduction of miR-148a-3p expression in SW480 and SW620 cells compared to non-tumor cells (p < 0.05). Overexpression of miR-148a selectively inhibited CRC cell viability (p < 0.001), while weakly affecting normal CCD 841 CoN cell survival (p < 0.05). At the cellular level, miR-148a-3p mimics promoted apoptotic cell death via caspase-3 activation (p < 0.001), accumulation of mitochondrial reactive oxygen species (ROS) (p < 0.001), and membrane depolarization (p < 0.001). Moreover, miR-148a-3p overexpression induced lipid peroxidation (p < 0.01), GPX4 downregulation (p < 0.01), and ferroptosis (p < 0.01), as revealed by intracellular and mitochondrial iron accumulation and ACSL4/TFRC/Ferritin modulation. In addition, levels of SLC7A11 mRNA and protein, the cellular targets of miR-148a-3p predicted by bioinformatic tools, were suppressed by miR-148a-3p's overexpression. On the contrary, the downregulation of miR-148a-3p boosted SLC7A11 gene expression and suppressed ferroptosis. Together, these in vitro findings reveal that miR-148a-3p can function as a tumor suppressor in CRC by targeting SLC7A11 and activating ferroptosis, opening new perspectives for the rationale of therapeutic strategies through targeting the miR-148a-3p/SLC7A11 pathway.

6.
Cell Commun Signal ; 21(1): 245, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730576

RESUMO

BACKGROUND: Several studies show that natural foods are a source of compounds with anticancer properties that affect the gut microbiota and its metabolites. In the present study, we investigate the effect of a delactosed buffalo milk whey by-product (DMW) on colorectal carcinogenesis. METHODS: The effect of DMW on colorectal carcinoma (CRC) was investigated in the established mouse model of azoxymethane (AOM)-induced colon carcinoma, which closely resembles the human clinical condition of CRC. The effect of DMW on CRC immortalized cell lines was also evaluated to further identify the antineoplastic mechanism of action. RESULTS: Pretreatment of AOM-treated mice with DMW significantly (P < 0.05) reduced the percentage of mice bearing both aberrant crypt foci with more than four crypts (which are early precancerous lesions that progress to CRC) and tumors. In addition, DMW completely counteracted the effect of AOM on protein expression of caspase-9, cleaved caspase-3 and poly ADP-ribose polymerase in colonic tissue. Administration of DMW alone (i.e. without AOM) resulted in changes in the composition of the gut microbiota, leading to enrichment or depletion of genera associated with health and disease, respectively. DMW was also able to restore AOM-induced changes in specific genera of the gut microbiota. Specifically, DMW reduced the genera Atopobiaceae, Ruminococcus 1 and Lachnospiraceae XPB1014 and increased the genera Parabacteroides and Candidatus Saccharimonas, which were increased and reduced, respectively, by AOM. Blood levels of butyric acid and cancer diagnostic markers (5-methylcytidine and glycerophosphocholine), which were increased by AOM treatment, were reduced by DMW. Furthermore, DMW exerted cytotoxic effects on two human CRC cell lines (HCT116 and HT29) and these effects were associated with the induction of apoptotic signaling. CONCLUSIONS: Our results suggest that DMW exerts chemopreventive effects and restores the gut microbiota in AOM-induced CRC, and induces cytotoxic effect on CRC cells. DMW could be an important dietary supplement to support a healthy gut microbiota and reduce the prevalence of CRC in humans. Video Abstract.


Assuntos
Neoplasias Colorretais , Soro do Leite , Humanos , Animais , Camundongos , Búfalos , Leite , Carcinogênese , Neoplasias Colorretais/tratamento farmacológico , Azoximetano/toxicidade , Ácido Butírico
7.
Antioxidants (Basel) ; 12(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37372041

RESUMO

Endothelial dysfunction plays a critical role in the progression of type 2 diabetes mellitus (T2DM), leading to cardiovascular complications. Current preventive antioxidant strategies to reduce oxidative stress and improve mitochondrial function in T2DM highlight dietary interventions as a promising approach, stimulating the deepening of knowledge of food sources rich in bioactive components. Whey (WH), a dairy by-product with a considerable content of bioactive compounds (betaines and acylcarnitines), modulates cancer cell metabolism by acting on mitochondrial energy metabolism. Here, we aimed at covering the lack of knowledge on the possible effect of WH on the mitochondrial function in T2DM. The results showed that WH improved human endothelial cell (TeloHAEC) function during the in vitro diabetic condition mimicked by treating cells with palmitic acid (PA) (0.1 mM) and high glucose (HG) (30 mM). Of note, WH protected endothelial cells from PA+HG-induced cytotoxicity (p < 0.01) and prevented cell cycle arrest, apoptotic cell death, redox imbalance, and metabolic alteration (p < 0.01). Moreover, WH counteracted mitochondrial injury and restored SIRT3 levels (p < 0.01). The SiRNA-mediated suppression of SIRT3 abolished the protective effects exerted by WH on the mitochondrial and metabolic impairment caused by PA+HG. These in vitro results reveal the efficacy of whey as a redox and metabolic modulator in the diabetic state and pave the way for future studies to consider whey as the source of dietary bioactive molecules with health benefits in preventive strategies against chronic diseases.

8.
Mol Ther Nucleic Acids ; 32: 371-384, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37128277

RESUMO

Micro-RNAs (miRNAs) control gene expression at the post-transcriptional level and are widely involved in carcinogenesis, playing a role as both oncogenes and tumor suppressors. MiRNAs act as potent therapeutic weapon in cancer, but their potential therapeutic use is limited by the off-target effect due to their nonspecific distribution in normal tissues. The encapsulation of miRNAs in nanostructured carriers allows targeted effects aimed to destroy cancer cells, without affecting healthy tissues. Due to their small size and the optimal surface/size ratio, nanoparticles (NPs) envelop, protect, and release miRNAs, representing a promising strategy in cancer treatment. In the present review, we discuss the latest advances in the field of miRNA-encapsulating NPs in cancer, focusing on colorectal cancer and its metastatic forms, one of the most common malignancies worldwide.

9.
Redox Biol ; 62: 102681, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37003179

RESUMO

MiR-27b is highly expressed in endothelial cells (EC) but its function in this context is poorly characterized. This study aims to investigate the effect of miR-27b on inflammatory pathways, cell cycle, apoptosis, and mitochondrial oxidative imbalances in immortalized human aortic endothelial cells (teloHAEC), human umbilical vein endothelial cells (HUVEC), and human coronary artery endothelial cells (HCAEC) exposed to TNF-α. Treatment with TNF-α downregulates the expression of miR-27b in all EC lines, promotes the activation of inflammatory pathways, induces mitochondrial alteration and reactive oxygen species accumulation, fostering the induction of intrinsic apoptosis. Moreover, miR-27b mimic counteracts the TNF-α-related cytotoxicity and inflammation, as well as cell cycle arrest and caspase-3-dependent apoptosis, restoring mitochondria redox state, function, and membrane polarization. Mechanistically, hsa-miR-27b-3p targets the 3'untranslated regions of FOXO1 mRNA to downregulate its expression, blunting the activation of the Akt/FOXO1 pathway. Here, we show that miR-27b is involved in the regulation of a broad range of functionally intertwined phenomena in EC, suggesting its key role in mitigating mithochondrial oxidative stress and inflammation, most likely through targeting of FOXO1. Overall, results reveal for the first time that miR-27b could represent a possible target for future therapies aimed at improving endothelial health.


Assuntos
Células Endoteliais da Veia Umbilical Humana , MicroRNAs , Estresse Oxidativo , Humanos , Apoptose/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamação/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
10.
Theranostics ; 13(2): 531-542, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632236

RESUMO

Background: Proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors (i) are a class of lipid-lowering drugs suggested to hold a plethora of beneficial effects independent of their LDL cholesterol-lowering properties. However, the mechanism underlying such observations is debated. Methods: Human aortic endothelial cells (TeloHAEC) were pre-treated with 100 µg/mL of the PCSK9i evolocumab and then exposed to 20 ng/mL of IL-6, a major driver of cardiovascular diseases (CVD), in both naïve state and after siRNA-mediated suppression of the NAD-dependent deacetylase sirtuin-3 (SIRT3). Inflammation, autophagy, and oxidative stress were assessed through Western Blots, ELISAs, and/or immunofluorescence coupled by flow cytometry. To explore the human relevance of the findings, we also evaluated the expression of IL-6, SIRT3, IL-1ß, the ratio LC3B II/I, and PCSK9 within the plaques of patients undergoing carotid endarterectomy (n=277), testing possible correlations between these proteins. Results: PCSK9i improved a range of phenotypes including the activation of inflammatory pathways, oxidative stress, and autophagy. Indeed, treatment with PCSK9i was able to counteract the IL-6 induced increase in inflammasome activation, the accrual of autophagic cells, and mitochondrial ROS accumulation. Of note, silencing of SIRT3 reverted the beneficial effects observed with PCSK9i treatment on all these phenomena. In atheroma specimens, the expression of PCSK9 was inversely related to that of SIRT3 while positively correlating with IL-6, IL-1ß, and the ratio LC3B II/I. Conclusions: Overall, these data suggest that PCSK9i bear intrinsic anti-inflammatory, anti-autophagic, and antioxidant properties in endothelial cells, and that these pleiotropic effects might be mediated, at least in part, by SIRT3. These results provide an additional mechanism supporting the emerging knowledge relative to the benefit of PCSK9i on CVD beyond LDL-lowering and uncover SIRT3 as a putative mediator of such pleiotropy.


Assuntos
Autofagia , Doenças Cardiovasculares , Estresse Oxidativo , Inibidores de PCSK9 , Sirtuína 3 , Humanos , Autofagia/efeitos dos fármacos , Células Endoteliais/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Inibidores de PCSK9/farmacologia , Inibidores de PCSK9/uso terapêutico , Pró-Proteína Convertase 9/metabolismo , Sirtuína 3/metabolismo
11.
Nutrients ; 14(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36501111

RESUMO

The relationship between dietary constituents and the onset and prevention of colorectal cancer (CRC) is constantly growing. Recently, the antineoplastic profiles of milk and whey from Mediterranean buffalo (Bubalus bubalis) have been brought to attention. However, to date, compared to cow milk, the potential health benefits of buffalo milk exosome-miRNA are still little explored. In the present study, we profiled the exosomal miRNA from buffalo milk and investigated the possible anticancer effects in CRC cells, HCT116, and HT-29. Results indicated that buffalo milk exosomes contained higher levels of miR-27b, miR-15b, and miR-148a compared to cow milk. Mimic miR-27b transfection in CRC cells induced higher cytotoxic effects (p < 0.01) compared to miR-15b and miR-148a. Moreover, miR-27b overexpression in HCT116 and HT-29 cells (miR-27b+) induced apoptosis, mitochondrial reactive oxygen species (ROS), and lysosome accumulation. Exposure of miR-27b+ cells to the bioactive 3kDa milk extract aggravated the apoptosis rate (p < 0.01), mitochondrial stress (p < 0.01), and advanced endoplasmic reticulum (ER) stress (p < 0.01), via PERK/IRE1/XBP1 and CHOP protein modulation (p < 0.01). Moreover, GSK2606414, the ER-inhibitor (ER-i), decreased the apoptosis phenomenon and XBP1 and CHOP modulation in miR-27b+ cells treated with milk (p < 0.01 vs. miR-27b++Milk), suggesting the ER stress as a cell-death-aggravating mechanism. These results support the in vitro anticancer activity of 3kDa milk extract and unveil the contribution of miR-27b in the promising beneficial effect of buffalo milk in CRC prevention.


Assuntos
Antineoplásicos , Neoplasias Colorretais , MicroRNAs , Animais , Feminino , Bovinos , Leite/metabolismo , Estresse do Retículo Endoplasmático , MicroRNAs/genética , MicroRNAs/metabolismo , Apoptose , Antineoplásicos/farmacologia , Búfalos/genética , Búfalos/metabolismo , Neoplasias Colorretais/genética , Extratos Vegetais/farmacologia
12.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232386

RESUMO

In the present study, we aimed at assessing the influence of breed and feeding system on the bovine milk profile of betaines and carnitines and milk capacity in counteracting the inflammatory endothelial cell (EC) damage induced by interleukin (IL)-6. In the first experimental design, two breeds were chosen (Holstein vs. Modicana) to investigate the biomolecule content and antioxidant capacity in milk and dairy products. In the second experimental design, two feeding systems (pasture vs. total mixed ratio) were tested only in Holstein to evaluate the possible effect on the functional profile of milk and dairy products. Finally, the bulk milk from the two experimental designs was used to evaluate the efficacy of preventing IL-6-induced endothelial inflammatory damage. Results showed that Modicana milk and whey had higher biomolecule content and antioxidant activity compared to Holstein milk (p < 0.01). Milk from Holstein fed TMR showed higher concentration of γ-butyrobetaine, δ-valerobetaine (p < 0.01), and l-carnitine (p < 0.05). Similarly, whey from Holstein fed TMR also showed higher content of δ-valerobetaine, glycine betaine, l-carnitine, and acetyl-l-carnitine (p < 0.01) compared to the Holstein fed pasture. Conversely, the antioxidant activity of milk and dairy products was not affected by the feeding system. In ECs, all milk samples reduced the IL-6-induced cytokine release, as well as the accumulation of reactive oxygen species (ROS) and the induction of cell death, with the most robust effect elicited by Modicana milk (p < 0.01). Overall, Modicana milk showed a higher content of biomolecules and antioxidant activity compared to Holstein, suggesting that the breed, more than the feeding system, can positively affect the health-promoting profile of dairy cattle milk.


Assuntos
Antioxidantes , Leite , Acetilcarnitina/metabolismo , Ração Animal , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Betaína/metabolismo , Carnitina/metabolismo , Bovinos , Dieta , Feminino , Interleucina-6/metabolismo , Lactação/fisiologia , Leite/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas do Soro do Leite/metabolismo
13.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955595

RESUMO

Recent pharmacological research on milk whey, a byproduct of the dairy industry, has identified several therapeutic properties that could be exploited in modern medicine. In the present study, we investigated the anticancer effects of whey from Mediterranean buffalo (Bubalus bubalis) milk. The antitumour effect of delactosed milk whey (DMW) was evaluated using the HCT116 xenograft mouse model of colorectal cancer (CRC). There were no discernible differences in tumour growth between treated and untreated groups. Nevertheless, haematoxylin and eosin staining of the xenograft tissues showed clearer signs of different cell death in DMW-treated mice compared to vehicle-treated mice. Detailed biochemical and molecular biological analyses revealed that DMW was able to downregulate the protein expression levels of c-myc, phospho-Histone H3 (ser 10) and p-ERK. Moreover, DMW also activated RIPK1, RIPK3, and MLKL axis in tumour tissues from xenograft mice, thus, suggesting a necroptotic effect. The necroptotic pathway was accompanied by activation of the apoptotic pathway as revealed by increased expression of both cleaved caspase-3 and PARP-1. At the molecular level, DMW-induced cell death was also associated with (i) upregulation of SIRT3, SIRT6, and PPAR-γ and (ii) downregulation of LDHA and PPAR-α. Overall, our results unveil the potential of whey as a source of biomolecules of food origin in the clinical setting of novel strategies for the treatment of CRC.


Assuntos
Neoplasias Colorretais , Sirtuínas , Animais , Apoptose , Búfalos/metabolismo , Xenoenxertos , Humanos , Camundongos , Leite/química , Necroptose , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Sirtuínas/metabolismo , Soro do Leite/metabolismo
14.
Pharmacol Res ; 182: 106303, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35697289

RESUMO

OBJECTIVES: We evaluated whether Angiotensin receptor/Neprilysin inhibitors (ARNI) reduce heart failure (HF) hospitalizations and deaths in cardiac resynchronization therapy with defibrillator (CRTd) non-responders patients at 12 months of follow-up, modulating microRNAs (miRs) implied in adverse cardiac remodeling. BACKGROUND: adverse cardiac remodeling characterized by left ventricle ejection fraction (LVEF) reduction, left ventricular end-systolic volume (LVESv) increase, and the 6-minute walking test (6MWT) reduction are relevant pathological mechanisms in CRTd non-responders and could be linked to changes in miRNAs (miRs), regulating cardiac fibrosis, apoptosis, and hypertrophy. METHODS: miRs levels and clinical outcomes (LVEF, cardiac deaths, and 6MWT) were evaluated at baseline and one year of follow-up in CRTd non-responders divided into ARNI-users and Non-ARNI users. RESULTS: At baseline, there were no differences in levels of inflammatory markers, miR-18, miR-145, and miR-181 (p > 0.05) between Non-ARNI users (n 106) and ARNI-users (n 312). At one year of follow-up, ARNI-users vs. Non-ARNI users showed lowest inflammatory markers (p < 0.01) and miR-181 levels (p < 0.01) and higher values of miR-18 (p < 0.01)and miR-145 (p < 0.01). At one year of follow-up, ARNI-users had a higher increase of LVEF (p < 0.01) and 6MWT (p < 0.01) along with a more significant reduction of LVESv (p < 0.01) compared to Non-ARNI users. Cox regression analysis evidenced that ARNI-based therapies increase the probability of anti-remodeling effects of CRTd. Based on symptomatic improvements, echocardiographic and functional classification improvements, 37 (34.9%) patients among ARNI-users became responders, while only twenty (6.4%) patients became responders among Non-ARNi-users. CONCLUSIONS: ARNI might influence epigenetic mechanisms modulating miRs implicated in the adverse cardiac remodeling responses to CRTd.


Assuntos
Terapia de Ressincronização Cardíaca , Insuficiência Cardíaca , MicroRNAs , Antagonistas de Receptores de Angiotensina/uso terapêutico , Anti-Hipertensivos/uso terapêutico , Combinação de Medicamentos , Epigênese Genética , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Humanos , MicroRNAs/genética , MicroRNAs/uso terapêutico , Neprilisina/uso terapêutico , Receptores de Angiotensina/uso terapêutico , Volume Sistólico , Resultado do Tratamento , Remodelação Ventricular
15.
Nat Commun ; 13(1): 2318, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484164

RESUMO

Patients with type 2 diabetes (T2D) are characterized by blunted immune responses, which are affected by glycaemic control. Whether glycaemic control influences the response to COVID-19 vaccines and the incidence of SARS-CoV-2 breakthrough infections is unknown. Here we show that poor glycaemic control, assessed as mean HbA1c in the post-vaccination period, is associated with lower immune responses and an increased incidence of SARS-CoV-2 breakthrough infections in T2D patients vaccinated with mRNA-BNT162b2. We report data from a prospective observational study enroling healthcare and educator workers with T2D receiving the mRNA-BNT162b2 vaccine in Campania (Italy) and followed for one year (5 visits, follow-up 346 ± 49 days) after one full vaccination cycle. Considering the 494 subjects completing the study, patients with good glycaemic control (HbA1c one-year mean < 7%) show a higher virus-neutralizing antibody capacity and a better CD4 + T/cytokine response, compared with those with poor control (HbA1c one-year mean ≥ 7%). The one-year mean of HbA1c is linearly associated with the incidence of breakthrough infections (Beta = 0.068; 95% confidence interval [CI], 0.032-0.103; p < 0.001). The comparison of patients with poor and good glycaemic control through Cox regression also show an increased risk for patients with poor control (adjusted hazard ratio [HR], 0.261; 95% CI, 0.097-0.700; p = 0.008). Among other factors, only smoking (HR = 0.290, CI 0.146-0.576 for non-smokers; p < 0.001) and sex (HR = 0.105, CI 0.035-0.317 for females; p < 0.001) are significantly associated with the incidence of breakthrough infections.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Vacina BNT162 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Hemoglobinas Glicadas , Controle Glicêmico , Humanos , RNA Mensageiro , SARS-CoV-2
16.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35328633

RESUMO

Sirtuins (SIRTs) are a family of class III histone deacetylases (HDACs) consisting of seven members, widely expressed in mammals. SIRTs mainly participate in metabolic homeostasis, DNA damage repair, cell survival, and differentiation, as well as other cancer-related biological processes. Growing evidence shows that SIRTs have pivotal roles in chronic degenerative diseases, including colorectal cancer (CRC), the third most frequent malignant disease worldwide. Metabolic alterations are gaining attention in the context of CRC development and progression, with mitochondrion representing a crucial point of complex and intricate molecular mechanisms. Mitochondrial SIRTs, SIRT2, SIRT3, SIRT4 and SIRT5, control mitochondrial homeostasis and dynamics. Here, we provide a comprehensive review on the latest advances on the role of mitochondrial SIRTs in the initiation, promotion and progression of CRC. A deeper understanding of the pathways by which mitochondrial SIRTs control CRC metabolism may provide new molecular targets for future innovative strategies for CRC prevention and therapy.


Assuntos
Neoplasias Colorretais , Sirtuína 3 , Sirtuínas , Animais , Neoplasias Colorretais/metabolismo , Homeostase , Mamíferos/metabolismo , Mitocôndrias/metabolismo , Sirtuína 3/metabolismo , Sirtuínas/metabolismo
17.
FEBS Lett ; 596(10): 1313-1329, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35122251

RESUMO

Ergothioneine (Egt) is a dietary amino acid which acts as an antioxidant to protect against ageing-related diseases. We investigated the anti-cancer properties of Egt in colorectal cancer cells (CRC). Egt treatment exerted cytotoxicity in a dose-dependent manner, induced reactive oxygen species accumulation, loss of mitochondrial membrane potential and upregulation of the histone deacetylase SIRT3. Immunoblotting analysis indicated that the cell death occurred via necroptosis through activation of the RIP1/RIP3/MLKL pathway. An immunoprecipitation assay unveiled that the interaction between the terminal effector in necroptotic signalling MLKL and SIRT3 increased during the Egt treatment. SIRT3 gene silencing blocked the upregulation of MLKL and abolished the ability of Egt to induce necroptosis. The SIRT3-MLKL interaction may mediate the necroptotic effects of Egt in CRC, suggesting the potential of this dietary amino thione in the prevention of CRC.


Assuntos
Neoplasias Colorretais , Ergotioneína , Sirtuína 3 , Apoptose , Neoplasias Colorretais/genética , Dieta , Ergotioneína/farmacologia , Humanos , Necroptose , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo
18.
Metabolism ; 127: 154936, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34801581

RESUMO

BACKGROUND: The pathogenesis of experimental diabetic cardiomyopathy may involve the activator protein 1 (AP-1) member, JunD. Using non-diabetic heart transplant (HTX) in recipients with diabetes, we examined the effects of the diabetic milieu (hyperglycemia and insulin resistance) on cardiac JunD expression over 12 months. Because sodium/glucose cotransporter-2 inhibitors (SGLT2i) significantly reverse high glucose-induced AP-1 binding in the proximal tubular cell, we investigated JunD expression in a subgroup of type 2 diabetic recipients receiving SGLT2i treatment. METHODS: We evaluated 77 first HTX recipients (40 and 37 patients with and without diabetes, respectively). Among the recipients with diabetes, 17 (45.9%) were receiving SGLT2i treatment. HTX recipients underwent standard clinical evaluation (metabolic status, echocardiography, coronary computed tomography angiography, and endomyocardial biopsy). In the biopsy samples, we evaluated JunD, insulin receptor substrates 1 and 2 (IRS1 and IRS2), peroxisome proliferator-activated receptor-γ (PPAR-γ), and ceramide levels using real-time polymerase chain reaction and immunofluorescence. The biopsy evaluations in this study were performed at 1-4 weeks (basal), 5-12 weeks (intermediate), and up to 48 weeks (final, end of 12-month follow-up) after HTX. RESULTS: There was a significant early and progressive increase in the cardiac expression of JunD/PPAR-γ and ceramide levels, along with a significant decrease in IRS1 and IRS2 in recipients with diabetes but not in those without diabetes. These molecular changes were blunted in patients with diabetes receiving SGLT2i treatment. CONCLUSION: Early pathogenesis in human diabetic cardiomyopathy is associated with JunD/PPAR-γ overexpression and lipid accumulation following HTX in recipients with diabetes. Remarkably, this phenomenon was reduced by concomitant therapy with SGLT2i, which acted directly on diabetic hearts.


Assuntos
Cardiomiopatias Diabéticas , Coração/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-jun/genética , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Adulto , Biópsia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/cirurgia , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/cirurgia , Feminino , Seguimentos , Expressão Gênica/efeitos dos fármacos , Coração/fisiologia , Transplante de Coração , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
19.
Cancers (Basel) ; 13(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34680344

RESUMO

Emerging strategies to improve healthy aging include dietary interventions as a tool to promote health benefits and reduce the incidence of aging-related comorbidities. The health benefits of milk are also linked to its richness in betaines and short-chain acylcarnitines, which act synergistically in conferring anticancer, anti-inflammatory, and antioxidant properties. Whey, despite being a dairy by-product, still has a considerable content of bioactive betaines and acylcarnitines. Here, we investigated the anticancer properties of whey from Mediterranean water buffalo (Bubalus bubalis) milk by testing its antiproliferative effects in colorectal cancer (CRC) cells HT-29, HCT 116, LoVo and SW480. Results indicated that treatment with whey for 72 h inhibited cell proliferation (p < 0.001), induced cell cycle arrest, and apoptosis via caspase-3 activation, and modulated cell metabolism by limiting glucose uptake and interfering with mitochondrial energy metabolism with the highest effects observed in HT-29 and HCT 116 cells. At molecular level, these effects were accompanied by upregulation of sirtuin 3 (SIRT3) (p < 0.01) and peroxisome proliferator-activated receptor (PPAR)-γ expression (p < 0.001), and downregulation of lactate dehydrogenase A (LDHA) (p < 0.01), sterol regulatory-element binding protein 1 (SREBP1) (p < 0.05), and PPAR-α (p < 0.01). Transient SIRT3 gene silencing blocked the effects of whey on the LDHA, PPAR-γ, and PPAR-α protein expressions (p < 0.01) suggesting that the whey capacity of perturbating the metabolic homeostasis in CRC cell lines is mediated by SIRT3.

20.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360883

RESUMO

Understanding the mechanisms of colorectal cancer progression is crucial in the setting of strategies for its prevention. δ-Valerobetaine (δVB) is an emerging dietary metabolite showing cytotoxic activity in colon cancer cells via autophagy and apoptosis. Here, we aimed to deepen current knowledge on the mechanism of δVB-induced colon cancer cell death by investigating the apoptotic cascade in colorectal adenocarcinoma SW480 and SW620 cells and evaluating the molecular players of mitochondrial dysfunction. Results indicated that δVB reduced cell viability in a time-dependent manner, reaching IC50 after 72 h of incubation with δVB 1.5 mM, and caused a G2/M cell cycle arrest with upregulation of cyclin A and cyclin B protein levels. The increased apoptotic cell rate occurred via caspase-3 activation with a concomitant loss in mitochondrial membrane potential and SIRT3 downregulation. Functional studies indicated that δVB activated mitochondrial apoptosis through PINK1/Parkin pathways, as upregulation of PINK1, Parkin, and LC3B protein levels was observed (p < 0.0001). Together, these findings support a critical role of PINK1/Parkin-mediated mitophagy in mitochondrial dysfunction and apoptosis induced by δVB in SW480 and SW620 colon cancer cells.


Assuntos
Adenocarcinoma/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Suplementos Nutricionais , Mitofagia/efeitos dos fármacos , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuína 3/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Valeratos/farmacologia , Adenocarcinoma/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/patologia , Humanos , Concentração Inibidora 50 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA