Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Epilepsia ; 65(3): 779-791, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38088023

RESUMO

OBJECTIVE: Epilepsy with eyelid myoclonia (EEM) spectrum is a generalized form of epilepsy characterized by eyelid myoclonia with or without absences, eye closure-induced seizures with electroencephalographic paroxysms, and photosensitivity. Based on the specific clinical features, age at onset, and familial occurrence, a genetic cause has been postulated. Pathogenic variants in CHD2, SYNGAP1, NEXMIF, RORB, and GABRA1 have been reported in individuals with photosensitivity and eyelid myoclonia, but whether other genes are also involved, or a single gene is uniquely linked with EEM, or its subtypes, is not yet known. We aimed to dissect the genetic etiology of EEM. METHODS: We studied a cohort of 105 individuals by using whole exome sequencing. Individuals were divided into two groups: EEM- (isolated EEM) and EEM+ (EEM accompanied by intellectual disability [ID] or any other neurodevelopmental/psychiatric disorder). RESULTS: We identified nine variants classified as pathogenic/likely pathogenic in the entire cohort (8.57%); among these, eight (five in CHD2, one in NEXMIF, one in SYNGAP1, and one in TRIM8) were found in the EEM+ subcohort (28.57%). Only one variant (IFIH1) was found in the EEM- subcohort (1.29%); however, because the phenotype of the proband did not fit with published data, additional evidence is needed before considering IFIH1 variants and EEM- an established association. Burden analysis did not identify any single burdened gene or gene set. SIGNIFICANCE: Our results suggest that for EEM, as for many other epilepsies, the identification of a genetic cause is more likely with comorbid ID and/or other neurodevelopmental disorders. Pathogenic variants were mostly found in CHD2, and the association of CHD2 with EEM+ can now be considered a reasonable gene-disease association. We provide further evidence to strengthen the association of EEM+ with NEXMIF and SYNGAP1. Possible new associations between EEM+ and TRIM8, and EEM- and IFIH1, are also reported. Although we provide robust evidence for gene variants associated with EEM+, the core genetic etiology of EEM- remains to be elucidated.


Assuntos
Epilepsia Generalizada , Epilepsia Reflexa , Mioclonia , Humanos , Sequenciamento do Exoma , Helicase IFIH1 Induzida por Interferon/genética , Epilepsia Reflexa/genética , Eletroencefalografia , Pálpebras , Proteínas de Transporte/genética , Proteínas do Tecido Nervoso/genética
2.
Epilepsia Open ; 9(1): 417-423, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37805811

RESUMO

Biallelic CNTNAP2 variants have been associated with Pitt-Hopkins-like syndrome. We describe six novel and one previously reported patients from six independent families and review the literature including 64 patients carrying biallelic CNTNAP2 variants. Initial reports highlighted intractable focal seizures and the failure of epilepsy surgery in children, but subsequent reports did not expand on this aspect. In all our patients (n = 7), brain MRI showed bilateral temporal gray/white matter blurring with white matter high signal intensity, more obvious on the T2-FLAIR sequences, consistent with bilateral temporal lobe dysplasia. All patients had focal seizures with temporal lobe onset and semiology, which were recorded on EEG in five, showing bilateral independent temporal onset in four. Epilepsy was responsive to anti-seizure medications in two patients (2/7, 28.5%), and pharmaco-resistant in five (5/7, 71.5%). Splice-site variants identified in five patients (5/7, 71.5%) were the most common mutational finding. Our observation expands the phenotypic and genetic spectrum of biallelic CNTNAP2 alterations focusing on the neuroimaging features and provides evidence for an elective bilateral anatomoelectroclinical involvement of the temporal lobes in the associated epilepsy, with relevant implications on clinical management.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Criança , Humanos , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/cirurgia , Eletroencefalografia , Epilepsia/complicações , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/cirurgia , Convulsões/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética
3.
Brain ; 146(9): 3885-3897, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37006128

RESUMO

Dravet syndrome is an archetypal rare severe epilepsy, considered 'monogenic', typically caused by loss-of-function SCN1A variants. Despite a recognizable core phenotype, its marked phenotypic heterogeneity is incompletely explained by differences in the causal SCN1A variant or clinical factors. In 34 adults with SCN1A-related Dravet syndrome, we show additional genomic variation beyond SCN1A contributes to phenotype and its diversity, with an excess of rare variants in epilepsy-related genes as a set and examples of blended phenotypes, including one individual with an ultra-rare DEPDC5 variant and focal cortical dysplasia. The polygenic risk score for intelligence was lower, and for longevity, higher, in Dravet syndrome than in epilepsy controls. The causal, major-effect, SCN1A variant may need to act against a broadly compromised genomic background to generate the full Dravet syndrome phenotype, whilst genomic resilience may help to ameliorate the risk of premature mortality in adult Dravet syndrome survivors.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Humanos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Epilepsias Mioclônicas/genética , Epilepsia/genética , Fenótipo , Genômica
4.
Pract Neurol ; 23(4): 293-302, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36823117

RESUMO

Focal cortical dysplasia (FCD) is a malformation of cortical development characterised by disruption of cortical cytoarchitecture. Classification of FCDs subtypes has initially been based on correlation of the histopathology with relevant clinical, electroencephalographic and neuroimaging features. A recently proposed classification update recommends a multilayered, genotype-phenotype approach, integrating findings from histopathology, genetic analysis of resected tissue and presurgical MRI. FCDs are caused either by single somatic activating mutations in MTOR pathway genes or by double-hit inactivating mutations with a constitutional and a somatic loss-of-function mutation in repressors of the signalling pathway. Mild malformation with oligodendroglial hyperplasia in epilepsy is caused by somatic pathogenic SLC35A2 mutations. FCDs most often present with drug-resistant focal epilepsy or epileptic encephalopathy. Most patients respond to surgical treatment. The use of mechanistic target of rapamycin inhibitors may complement the surgical approach. Treatment approaches and outcomes have improved with advances in neuroimaging, neurophysiology and genetics, although predictors of treatment response have only been determined in part.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Displasia Cortical Focal , Malformações do Desenvolvimento Cortical , Humanos , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/terapia , Neurologistas , Epilepsia/patologia , Mutação
5.
PLoS One ; 17(9): e0268720, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36178910

RESUMO

OBJECTIVE: Alternating Hemiplegia of Childhood (AHC) is characterised by paroxysmal hemiplegic episodes and seizures. Remission of hemiplegia upon sleep is a clinical diagnostic feature of AHC. We investigated whether: 1) Hemiplegic events are associated with spectral EEG changes 2) Sleep in AHC is associated with clinical or EEG spectral features that may explain its restorative effect. METHODS: We retrospectively performed EEG spectral analysis in five adults with AHC and twelve age-/gender-matched epilepsy controls. Five-minute epochs of hemiplegic episodes and ten-minute epochs of four sleep stages were selected from video-EEGs. Arousals were counted per hour of sleep. RESULTS: We found 1) hemispheric differences in pre-ictal and ictal spectral power (p = 0.034), during AHC hemiplegic episodes 2) 22% reduced beta power (p = 0.017) and 26% increased delta power (p = 0.025) during wakefulness in AHC versus controls. There were 98% more arousals in the AHC group versus controls (p = 0.0003). CONCLUSIONS: There are hemispheric differences in spectral power preceding hemiplegic episodes in adults with AHC, and sleep is disrupted. SIGNIFICANCE: Spectral EEG changes may be a potential predictive tool for AHC hemiplegic episodes. Significantly disrupted sleep is a feature of AHC.


Assuntos
Eletroencefalografia , Hemiplegia , Adulto , Hemiplegia/complicações , Humanos , Estudos Retrospectivos , Fases do Sono , ATPase Trocadora de Sódio-Potássio
6.
Neurology ; 97(17): 817-831, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34493617

RESUMO

A monogenic etiology can be identified in up to 40% of people with severe epilepsy. To address earlier and more appropriate treatment strategies, clinicians are required to know the implications that specific genetic causes might have on pathophysiology, natural history, comorbidities, and treatment choices. In this narrative review, we summarize concepts on the genetic epilepsies based on the underlying pathophysiologic mechanisms and present the current knowledge on treatment options based on evidence provided by controlled trials or studies with lower classification of evidence. Overall, evidence robust enough to guide antiseizure medication (ASM) choices in genetic epilepsies remains limited to the more frequent conditions for which controlled trials and observational studies have been possible. Most monogenic disorders are very rare and ASM choices for them are still based on inferences drawn from observational studies and early, often anecdotal, experiences with precision therapies. Precision medicine remains applicable to only a narrow number of patients with monogenic epilepsies and may target only part of the actual functional defects. Phenotypic heterogeneity is remarkable, and some genetic mutations activate epileptogenesis through their developmental effects, which may not be reversed postnatally. Other genes seem to have pure functional consequences on excitability, acting through either loss- or gain-of-function effects, and these may have opposite treatment implications. In addition, the functional consequences of missense mutations may be difficult to predict, making precision treatment approaches considerably more complex than estimated by deterministic interpretations. Knowledge of genetic etiologies can influence the approach to surgical treatment of focal epilepsies. Identification of germline mutations in specific genes contraindicates surgery while mutations in other genes do not. Identification, quantification, and functional characterization of specific somatic mutations before surgery using CSF liquid biopsy or after surgery in brain specimens will likely be integrated in planning surgical strategies and reintervention after a first unsuccessful surgery as initial evidence suggests that mutational load may correlate with the epileptogenic zone. Promising future directions include gene manipulation by DNA or mRNA targeting; although most are still far from clinical use, some are in early phase clinical development.


Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Epilepsia/genética , Terapia de Alvo Molecular/métodos , Medicina de Precisão/métodos , Predisposição Genética para Doença/genética , Humanos
7.
Eur J Neurosci ; 54(4): 5368-5383, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34192818

RESUMO

The functional anatomy of the anteromesial portion of the temporal lobe and its involvement in epilepsy can be explored by means of intracerebral electrical stimulations. Here, we aimed to expand the knowledge of its physiological and pathophysiological symptoms by conducting the first large-sample systematic analysis of 1529 electrical stimulations of this anatomical region. We retrospectively analysed all clinical manifestations induced by intracerebral electrical stimulations in 173 patients with drug-resistant focal epilepsy with at least one electrode implanted in this area. We found that high-frequency stimulations were more likely to evoke electroclinical manifestations (p < .0001) and also provoked 'false positive' seizures. Multimodal symptoms were associated with EEG electrical modification (after discharge) (p < .0001). Visual symptoms were not associated with after discharge (p = .0002) and were mainly evoked by stimulation of the hippocampus (p = .009) and of the parahippocampal gyrus (p = .0212). 'False positive seizures' can be evoked by stimulation of the hippocampus, parahippocampal gyrus and amygdala, likely due to their intrinsic low epileptogenic threshold. Visual symptoms evoked in the hippocampus and parahippocampal gyrus, without EEG changes, are physiological symptoms and suggest involvement of these areas in the visual ventral stream. Our findings provide meaningful guidance in the interpretation of intracranial EEG studies of the temporal lobe.


Assuntos
Eletroencefalografia , Epilepsia do Lobo Temporal , Estimulação Elétrica , Hipocampo , Humanos , Estudos Retrospectivos , Convulsões , Lobo Temporal
8.
Neurology ; 95(21): e2866-e2879, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-32913013

RESUMO

OBJECTIVE: To define the risks and consequences of cardiac abnormalities in ATP1A3-related syndromes. METHODS: Patients meeting clinical diagnostic criteria for rapid-onset dystonia-parkinsonism (RDP), alternating hemiplegia of childhood (AHC), and cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS) with ATP1A3 genetic analysis and at least 1 cardiac assessment were included. We evaluated the cardiac phenotype in an Atp1a3 knock-in mouse (Mashl+/-) to determine the sequence of events in seizure-related cardiac death. RESULTS: Ninety-eight patients with AHC, 9 with RDP, and 3 with CAPOS (63 female, mean age 17 years) were included. Resting ECG abnormalities were found in 52 of 87 (60%) with AHC, 2 of 3 (67%) with CAPOS, and 6 of 9 (67%) with RDP. Serial ECGs showed dynamic changes in 10 of 18 patients with AHC. The first Holter ECG was abnormal in 24 of 65 (37%) cases with AHC and RDP with either repolarization or conduction abnormalities. Echocardiography was normal. Cardiac intervention was required in 3 of 98 (≈3%) patients with AHC. In the mouse model, resting ECGs showed intracardiac conduction delay; during induced seizures, heart block or complete sinus arrest led to death. CONCLUSIONS: We found increased prevalence of ECG dynamic abnormalities in all ATP1A3-related syndromes, with a risk of life-threatening cardiac rhythm abnormalities equivalent to that in established cardiac channelopathies (≈3%). Sudden cardiac death due to conduction abnormality emerged as a seizure-related outcome in murine Atp1a3-related disease. ATP1A3-related syndromes are cardiac diseases and neurologic diseases. We provide guidance to identify patients potentially at higher risk of sudden cardiac death who may benefit from insertion of a pacemaker or implantable cardioverter-defibrillator.


Assuntos
Ataxia Cerebelar/genética , Deformidades Congênitas do Pé/genética , Perda Auditiva Neurossensorial/genética , Hemiplegia/genética , Mutação/genética , Atrofia Óptica/genética , Reflexo Anormal/genética , ATPase Trocadora de Sódio-Potássio/genética , Adolescente , Adulto , Ataxia Cerebelar/metabolismo , Ataxia Cerebelar/terapia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Deformidades Congênitas do Pé/metabolismo , Deformidades Congênitas do Pé/terapia , Perda Auditiva Neurossensorial/metabolismo , Perda Auditiva Neurossensorial/terapia , Hemiplegia/diagnóstico , Hemiplegia/terapia , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Atrofia Óptica/metabolismo , Atrofia Óptica/terapia , Fenótipo , Convulsões/terapia , Adulto Jovem
9.
Front Neurol ; 11: 592, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695064

RESUMO

Background: Epilepsy is one of the most common symptoms of brain tumors. It is often drug resistant and generally worsen patients' quality of life (QoL). Brain tumors release glutamate among other mediators, contributing to seizures onset, and this is accompanied by an increased AMPA receptors' expression on neuronal cells' membrane. Perampanel (PER) is a relatively new antiseizure medication (ASM) that acts as a selective non-competitive AMPA receptors' antagonist. Given its mechanism of action, we aimed to evaluate through a prospective, observational study, the efficacy and safety of PER as an add-on treatment in patients with brain tumor-related epilepsy (BTRE). The study was called PERADET. Methods: Thirty-six adult patients (intention to treat population-ITT) affected by BTRE, with uncontrolled focal-onset seizures treated with 1-3 ASMs were recruited from four Italian epilepsy centers. Perampanel was added-on, titrated from 2 mg/day up to a maximum of 12 mg/day. Tumor history and therapy, type, and seizures frequency, previous ASMs were collected at 6 and 12 months. A battery of QoL tests were administered at baseline, 6 and 12 months. The primary endpoint was to assess the efficacy of PER by calculating the percent change in seizure frequency and the responder rate. The secondary endpoints were tolerability, retention rate at 12 months, and improvement in quality of life. Results: At the end of 12 months, 21 patients (per protocol population-PP) were available for evaluation. In this population the responder rate (percentage of patients who experienced a 50% or greater reduction in seizure frequency) was 90.4 with 33.3% of patients being seizure-free. In the ITT group the responder rate at the end of 12 months was 66.6 with 25% of patients being seizure free. PER was well tolerated (30.6% of patients experienced an adverse event, none was severe; three needed a treatment interruptions). Conclusions: Our study indicate that PER may be efficacious against BTRE as suggested by its mechanism of action and our current knowledge on mechanisms of brain tumor epileptogenicity. Trial Registration Number (TRN): (Prot. n° 0008872.25-06-2019); RS 919/17.

10.
J Neurol ; 267(8): 2221-2227, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32274582

RESUMO

Idiopathic basal ganglia calcification (IBGC) or primary familial brain calcification is a rare genetic condition characterized by an autosomal dominant inheritance pattern and the presence of bilateral calcifications in the basal ganglia, thalami, cerebellum and cerebral subcortical white matter. The syndrome is genetically and phenotypically heterogeneous. Causal mutations have been identified in four genes: SLC20A2, PDGFRB, PDGFB and XPR1. A variety of progressive neurological and psychiatric symptoms have been described, including cognitive impairment, movement disorders, bipolar disorder, chronic headaches and migraine, and epilepsy. Here we describe a family with a novel SLC20A2 mutation mainly presenting with neurological symptoms including cortical myoclonus and epilepsy. While epilepsy, although rare, has been reported in patients with IBGC associated with SLC20A2 mutations, cortical myoclonus seems to be a new manifestation.


Assuntos
Doenças dos Gânglios da Base , Encefalopatias , Epilepsia , Mioclonia , Epilepsia/complicações , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Humanos , Mutação/genética , Mioclonia/diagnóstico por imagem , Mioclonia/genética , Linhagem , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Receptor do Retrovírus Politrópico e Xenotrópico
11.
BMJ Case Rep ; 12(6)2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31229970

RESUMO

We describe the case of a 35-year-old man with focal epilepsy since age 16. Due to a refractory course, several treatments were tried over the years, including insertion of a deep brain stimulator. At the time of his first assessment at our unit, he had recently been diagnosed with hypertension. An MR scan of brain revealed multiple T2 hyperintense white matter lesions, and evidence of previous haemorrhage in the left basal ganglia and pons. On follow-up imaging, the changes were considered to be in keeping with hypertensive arteriopathy. He was referred for further assessment of his hypertension and was found to have a para-aortic paraganglioma. This was excised 16 months after his initial presentation to us. The surgery was associated with an improvement in his seizure control. This case serves as a reminder of the need to be vigilant about the possibility of coexisting conditions in people with epilepsy.


Assuntos
Neoplasias Encefálicas/patologia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Hipertensão/diagnóstico por imagem , Paraganglioma/patologia , Substância Branca/patologia , Adulto , Anticonvulsivantes , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/cirurgia , Humanos , Hipertensão/etiologia , Hipertensão/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Paraganglioma/diagnóstico por imagem , Paraganglioma/cirurgia , Resultado do Tratamento , Substância Branca/diagnóstico por imagem , Substância Branca/cirurgia
12.
Genet Med ; 21(2): 398-408, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30093711

RESUMO

PURPOSE: To define the phenotypic and mutational spectrum of epilepsies related to DEPDC5, NPRL2 and NPRL3 genes encoding the GATOR1 complex, a negative regulator of the mTORC1 pathway METHODS: We analyzed clinical and genetic data of 73 novel probands (familial and sporadic) with epilepsy-related variants in GATOR1-encoding genes and proposed new guidelines for clinical interpretation of GATOR1 variants. RESULTS: The GATOR1 seizure phenotype consisted mostly in focal seizures (e.g., hypermotor or frontal lobe seizures in 50%), with a mean age at onset of 4.4 years, often sleep-related and drug-resistant (54%), and associated with focal cortical dysplasia (20%). Infantile spasms were reported in 10% of the probands. Sudden unexpected death in epilepsy (SUDEP) occurred in 10% of the families. Novel classification framework of all 140 epilepsy-related GATOR1 variants (including the variants of this study) revealed that 68% are loss-of-function pathogenic, 14% are likely pathogenic, 15% are variants of uncertain significance and 3% are likely benign. CONCLUSION: Our data emphasize the increasingly important role of GATOR1 genes in the pathogenesis of focal epilepsies (>180 probands to date). The GATOR1 phenotypic spectrum ranges from sporadic early-onset epilepsies with cognitive impairment comorbidities to familial focal epilepsies, and SUDEP.


Assuntos
Epilepsia/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Síndrome de Brugada/genética , Síndrome de Brugada/mortalidade , Síndrome de Brugada/fisiopatologia , Criança , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Epilepsia/complicações , Epilepsia/epidemiologia , Epilepsia/fisiopatologia , Feminino , Predisposição Genética para Doença , Humanos , Mutação INDEL/genética , Lactente , Recém-Nascido , Mutação com Perda de Função/genética , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Complexos Multiproteicos/genética , Linhagem , Convulsões/complicações , Convulsões/epidemiologia , Convulsões/genética , Convulsões/fisiopatologia , Transdução de Sinais/genética
13.
Neurology ; 91(22): e2078-e2088, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30413629

RESUMO

OBJECTIVE: To characterize the neurologic phenotypes associated with COL4A1/2 mutations and to seek genotype-phenotype correlation. METHODS: We analyzed clinical, EEG, and neuroimaging data of 44 new and 55 previously reported patients with COL4A1/COL4A2 mutations. RESULTS: Childhood-onset focal seizures, frequently complicated by status epilepticus and resistance to antiepileptic drugs, was the most common phenotype. EEG typically showed focal epileptiform discharges in the context of other abnormalities, including generalized sharp waves or slowing. In 46.4% of new patients with focal seizures, porencephalic cysts on brain MRI colocalized with the area of the focal epileptiform discharges. In patients with porencephalic cysts, brain MRI frequently also showed extensive white matter abnormalities, consistent with the finding of diffuse cerebral disturbance on EEG. Notably, we also identified a subgroup of patients with epilepsy as their main clinical feature, in which brain MRI showed nonspecific findings, in particular periventricular leukoencephalopathy and ventricular asymmetry. Analysis of 15 pedigrees suggested a worsening of the severity of clinical phenotype in succeeding generations, particularly when maternally inherited. Mutations associated with epilepsy were spread across COL4A1 and a clear genotype-phenotype correlation did not emerge. CONCLUSION: COL4A1/COL4A2 mutations typically cause a severe neurologic condition and a broader spectrum of milder phenotypes, in which epilepsy is the predominant feature. Early identification of patients carrying COL4A1/COL4A2 mutations may have important clinical consequences, while for research efforts, omission from large-scale epilepsy sequencing studies of individuals with abnormalities on brain MRI may generate misleading estimates of the genetic contribution to the epilepsies overall.


Assuntos
Colágeno Tipo IV/genética , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Epilepsia/genética , Feminino , Estudos de Associação Genética , Humanos , Masculino , Mutação , Adulto Jovem
14.
Curr Pharm Biotechnol ; 19(6): 440-450, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30003857

RESUMO

BACKGROUND: Diagnostic biomarkers of epilepsy are objectively measurable variables associated with the development of epilepsy or the propensity to generate seizures. Identification of biomarkers could be helpful for differential diagnosis and for tailored therapeutic approaches. OBJECTIVE: This review focuses on diagnostic biomarkers of epilepsy, including genetic, serological, neuroimaging and electrophysiological variables. METHODS: References were mainly identified through PubMed search until December 2017 and backtracking of references in pertinent studies. RESULTS: Several promising diagnostic biomarkers of epilepsy exist, with causative value or predicting liability to develop seizures after acquired brain injuries. Short non-coding RNAs are deregulated in serum and cerebral tissue of epilepsy subjects: these molecules are promising diagnostic biomarkers, being easy to assess and reproducible. Advanced imaging techniques may allow identification of subtle epileptogenic lesions, often with prognostic value. Novel electrophysiological biomarkers of epilepsy include perturbed cortical connectivity and excitability induced by transcranial magnetic stimulation, as well as high-frequency oscillations detected by intracranial and scalp electroencephalographic recordings. Finally, serological biomarkers may support the differential diagnosis between epileptic seizures and non-epileptic events. CONCLUSION: Ongoing research on diagnostic biomarkers of epilepsy is promising and future preclinical and clinical studies are warranted.


Assuntos
Epilepsia/diagnóstico , Biomarcadores , Eletroencefalografia , Epilepsia/sangue , Epilepsia/fisiopatologia , Humanos , Interleucina-6/sangue , MicroRNAs/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA