Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 19422, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371414

RESUMO

The interferon signalling system elicits a robust cytokine response against a wide range of environmental pathogenic and internal pathological signals, leading to induction of a subset of interferon-induced proteins. We applied DSS (disuccinimidyl suberate) mediated cross-linking mass spectrometry (CLMS) to capture novel protein-protein interactions within the realm of interferon induced proteins. In addition to the expected interferon-induced proteins, we identified novel inter- and intra-molecular cross-linked adducts for the canonical interferon induced proteins, such as MX1, USP18, OAS3, and STAT1. We focused on orthogonal validation of a cohort of novel interferon-induced protein networks formed by the HLA-A protein (H2BFS-HLA-A-HMGA1) using co-immunoprecipitation assay, and further investigated them by molecular dynamics simulation. Conformational dynamics of the simulated protein complexes revealed several interaction sites that mirrored the interactions identified in the CLMS findings. Together, we showcase a proof-of-principle CLMS study to identify novel interferon-induced signaling complexes and anticipate broader use of CLMS to identify novel protein interaction dynamics within the tumour microenvironment.


Assuntos
Interferons , Proteínas , Humanos , Reagentes de Ligações Cruzadas/química , Proteínas/química , Espectrometria de Massas/métodos , Antígenos HLA-A , Antígenos HLA , Ubiquitina Tiolesterase
2.
Biomolecules ; 12(8)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-36008984

RESUMO

The IFITM restriction factors play a role in cancer cell progression through undefined mechanisms. We investigate new protein-protein interactions for IFITM1/3 in the context of cancer that would shed some light on how IFITM1/3 attenuate the expression of targeted proteins such as HLA-B. SBP-tagged IFITM1 protein was used to identify an association of IFITM1 protein with the SRSF1 splicing factor and transporter of mRNA to the ribosome. Using in situ proximity ligation assays, we confirmed a predominant cytosolic protein-protein association for SRSF1 and IFITM1/3. Accordingly, IFITM1/3 interacted with HLA-B mRNA in response to IFNγ stimulation using RNA-protein proximity ligation assays. In addition, RT-qPCR assays in IFITM1/IFITM3 null cells and wt-SiHa cells indicated that HLA-B gene expression at the mRNA level does not account for lowered HLA-B protein synthesis in response to IFNγ. Complementary, shotgun RNA sequencing did not show major transcript differences between IFITM1/IFITM3 null cells and wt-SiHa cells. Furthermore, ribosome profiling using sucrose gradient sedimentation identified a reduction in 80S ribosomal fraction an IFITM1/IFITM3 null cells compared to wild type. It was partially reverted by IFITM1/3 complementation. Our data link IFITM1/3 proteins to HLA-B mRNA and SRSF1 and, all together, our results begin to elucidate how IFITM1/3 catalyze the synthesis of target proteins. IFITMs are widely studied for their role in inhibiting viruses, and multiple studies have associated IFITMs with cancer progression. Our study has identified new proteins associated with IFITMs which support their role in mediating protein expression; a pivotal function that is highly relevant for viral infection and cancer progression. Our results suggest that IFITM1/3 affect the expression of targeted proteins; among them, we identified HLA-B. Changes in HLA-B expression could impact the presentation and recognition of oncogenic antigens on the cell surface by cytotoxic T cells and, ultimately, limit tumor cell eradication. In addition, the role of IFITMs in mediating protein abundance is relevant, as it has the potential for regulating the expression of viral and oncogenic proteins.


Assuntos
Antígenos de Diferenciação/metabolismo , Antígenos HLA-B , Neoplasias do Colo do Útero , Feminino , Antígenos HLA-B/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fatores de Processamento de RNA , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Neoplasias do Colo do Útero/genética
3.
Life Sci Alliance ; 4(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34645618

RESUMO

Better understanding of GBM signalling networks in-vivo would help develop more physiologically relevant ex vivo models to support therapeutic discovery. A "functional proteomics" screen was undertaken to measure the specific activity of a set of protein kinases in a two-step cell-free biochemical assay to define dominant kinase activities to identify potentially novel drug targets that may have been overlooked in studies interrogating GBM-derived cell lines. A dominant kinase activity derived from the tumour tissue, but not patient-derived GBM stem-like cell lines, was Bruton tyrosine kinase (BTK). We demonstrate that BTK is expressed in more than one cell type within GBM tissue; SOX2-positive cells, CD163-positive cells, CD68-positive cells, and an unidentified cell population which is SOX2-negative CD163-negative and/or CD68-negative. The data provide a strategy to better mimic GBM tissue ex vivo by reconstituting more physiologically heterogeneous cell co-culture models including BTK-positive/negative cancer and immune cells. These data also have implications for the design and/or interpretation of emerging clinical trials using BTK inhibitors because BTK expression within GBM tissue was linked to longer patient survival.


Assuntos
Tirosina Quinase da Agamaglobulinemia/metabolismo , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/mortalidade , Glioblastoma/enzimologia , Glioblastoma/mortalidade , Proteoma/metabolismo , Transdução de Sinais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Técnicas de Cocultura/métodos , Glioblastoma/patologia , Humanos , Células-Tronco Neoplásicas/enzimologia , Proteômica/métodos , Fatores de Transcrição SOXB1/metabolismo , Taxa de Sobrevida
4.
Biochem J ; 478(1): 99-120, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33284343

RESUMO

A comparative canine-human therapeutics model is being developed in B-cell lymphoma through the generation of a hybridoma cell that produces a murine monoclonal antibody specific for canine CD20. The hybridoma cell produces two light chains, light chain-3, and light chain-7. However, the contribution of either light chain to the authentic full-length hybridoma derived IgG is undefined. Mass spectrometry was used to identify only one of the two light chains, light chain-7, as predominating in the full-length IgG. Gene synthesis created a recombinant murine-canine chimeric monoclonal antibody expressing light chain-7 that reconstituted the IgG binding to CD20. Using light chain-7 as a reference sequence, hydrogen deuterium exchange mass spectrometry was used to identify the dominant CDR region implicated in CD20 antigen binding. Early in the deuteration reaction, the CD20 antigen suppressed deuteration at CDR3 (VH). In later time points, deuterium suppression occurred at CDR2 (VH) and CDR2 (VL), with the maintenance of the CDR3 (VH) interaction. These data suggest that CDR3 (VH) functions as the dominant antigen docking motif and that antibody aggregation is induced at later time points after antigen binding. These approaches define a methodology for fine mapping of CDR contacts using nested enzymatic reactions and hydrogen deuterium exchange mass spectrometry. These data support the further development of an engineered, synthetic canine-murine monoclonal antibody, focused on CDR3 (VH), for use as a canine lymphoma therapeutic that mimics the human-murine chimeric anti-CD20 antibody Rituximab.


Assuntos
Anticorpos Monoclonais/química , Antígenos CD20/imunologia , Espectrometria de Massa com Troca Hidrogênio-Deutério , Cadeias Pesadas de Imunoglobulinas/metabolismo , Cadeias Leves de Imunoglobulina/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/genética , Sítios de Ligação de Anticorpos , Linhagem Celular Tumoral , Cromatografia Líquida , Cães , Humanos , Imunoglobulina G/química , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Leves de Imunoglobulina/genética , Cinética , Biblioteca de Peptídeos , Proteínas Recombinantes de Fusão , Espectrometria de Massas em Tandem
5.
Cell Mol Biol Lett ; 25: 41, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32874188

RESUMO

BACKGROUND: The links between the p53/MDM2 pathway and the expression of pro-oncogenic immune inhibitory receptors in tumor cells are undefined. In this report, we evaluate whether there is p53 and/or MDM2 dependence in the expression of two key immune receptors, CD276 and PD-L1. METHODS: Proximity ligation assays were used to quantify protein-protein interactions in situ in response to Nutlin-3. A panel of p53-null melanoma cells was created using CRISPR-Cas9 guide RNA mediated genetic ablation. Flow cytometric analyses were used to assess the impact of TP53 or ATG5 gene ablation, as well as the effects of Nutlin-3 and an ATM inhibitor on cell surface PD-L1 and CD276. Targeted siRNA was used to deplete CD276 to assess changes in cell cycle parameters by flow cytometry. A T-cell proliferation assay was used to assess activity of CD4+ T-cells as a function of ATG5 genotype. RESULTS: CD276 forms protein-protein interactions with MDM2 in response to Nutlin-3, similar to the known MDM2 interactors p53 and HSP70. Isogenic HCT116 p53-wt/null cancer cells demonstrated that CD276 is induced on the cell surface by Nutlin-3 in a p53-dependent manner. PD-L1 was also unexpectedly induced by Nutlin-3, but PD-L1 does not bind MDM2. The ATM inhibitor KU55993 reduced the levels of PD-L1 under conditions where Nutlin-3 induces PD-L1, indicating that MDM2 and ATM have opposing effects on PD-L1 steady-state levels. PD-L1 is also up-regulated in response to genetic ablation of TP53 in A375 melanoma cell clones under conditions in which CD276 remains unaffected. A549 cells with a deletion in the ATG5 gene up-regulated only PD-L1, further indicating that PD-L1 and CD276 are under distinct genetic control. CONCLUSION: Genetic inactivation of TP53, or the use of the MDM2 ligand Nutlin-3, alters the expression of the immune blockade receptors PD-L1 and CD276. The biological function of elevated CD276 is to promote altered cell cycle progression in response to Nutlin-3, whilst the major effect of elevated PD-L1 is T-cell suppression. These data indicate that TP53 gene status, ATM and MDM2 influence PD-L1 and CD276 paralogs on the cell surface. These data have implications for the use of drugs that target the p53 pathway as modifiers of immune checkpoint receptor expression.


Assuntos
Antígenos B7/genética , Antígeno B7-H1/genética , Imidazóis/farmacologia , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/genética , Células A549 , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células HCT116 , Humanos , Ligantes , Melanoma/tratamento farmacológico , Proteína Supressora de Tumor p53/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
6.
Cell Signal ; 60: 39-56, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30951861

RESUMO

Interferon-induced transmembrane proteins IFITM1 and IFITM3 (IFITM1/3) play a role in both RNA viral restriction and in human cancer progression. Using immunohistochemical staining of FFPE tissue, we identified subgroups of cervical cancer patients where IFITM1/3 protein expression is inversely related to metastasis. Guide RNA-CAS9 methods were used to develop an isogenic IFITM1/IFITM3 double null cervical cancer model in order to define dominant pathways triggered by presence or absence of IFITM1/3 signalling. A pulse SILAC methodology identified IRF1, HLA-B, and ISG15 as the most dominating IFNγ inducible proteins whose synthesis was attenuated in the IFITM1/IFITM3 double-null cells. Conversely, SWATH-IP mass spectrometry of ectopically expressed SBP-tagged IFITM1 identified ISG15 and HLA-B as dominant co-associated proteins. ISG15ylation was attenuated in IFNγ treated IFITM1/IFITM3 double-null cells. Proximity ligation assays indicated that HLA-B can interact with IFITM1/3 proteins in parental SiHa cells. Cell surface expression of HLA-B was attenuated in IFNγ treated IFITM1/IFITM3 double-null cells. SWATH-MS proteomic screens in cells treated with IFITM1-targeted siRNA cells resulted in the attenuation of an interferon regulated protein subpopulation including MHC Class I molecules as well as IFITM3, STAT1, B2M, and ISG15. These data have implications for the function of IFITM1/3 in mediating IFNγ stimulated protein synthesis including ISG15ylation and MHC Class I production in cancer cells. The data together suggest that pro-metastatic growth associated with IFITM1/3 negative cervical cancers relates to attenuated expression of MHC Class I molecules that would support tumor immune escape.


Assuntos
Antígenos de Diferenciação/fisiologia , Proteínas de Membrana/fisiologia , Proteínas de Ligação a RNA/fisiologia , Neoplasias do Colo do Útero/metabolismo , Linhagem Celular , Feminino , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Biossíntese de Proteínas/fisiologia
7.
J Chem Phys ; 148(14): 145101, 2018 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-29655319

RESUMO

Cyclophilin 40 (Cyp40) is a member of the immunophilin family that acts as a peptidyl-prolyl-isomerase enzyme and binds to the heat shock protein 90 (Hsp90). Its structure comprises an N-terminal cyclophilin domain and a C-terminal tetratricopeptide (TPR) domain. Cyp40 is overexpressed in prostate cancer and certain T-cell lymphomas. The groove for Hsp90 binding on the TPR domain includes residues Lys227 and Lys308, referred to as the carboxylate clamp, and is essential for Cyp40-Hsp90 binding. In this study, the effect of two mutations, K227A and K308A, and their combinative mutant was investigated by performing a total of 5.76 µs of all-atom molecular dynamics (MD) simulations in explicit solvent. All simulations, except the K308A mutant, were found to adopt two distinct (extended or compact) conformers defined by different cyclophilin-TPR interdomain distances. The K308A mutant was only observed in the extended form which is observed in the Cyp40 X-ray structure. The wild-type, K227A, and combined mutant also showed bimodal distributions. The experimental melting temperature, Tm, values of the mutants correlate with the degree of compactness with the K308A extended mutant having a marginally lower melting temperature. Another novel measure of compactness determined from the MD data, the "coordination shell volume," also shows a direct correlation with Tm. In addition, the MD simulations show an allosteric effect with the mutations in the remote TPR domain having a pronounced effect on the molecular motions of the enzymatic cyclophilin domain which helps rationalise the experimentally observed increase in enzyme activity measured for all three mutations.


Assuntos
Ciclofilinas/química , Mutação Puntual/genética , Peptidil-Prolil Isomerase F , Ciclofilinas/genética , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios Proteicos/genética , Termodinâmica , Temperatura de Transição
8.
Cell Death Differ ; 24(5): 903-916, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28362432

RESUMO

Ubiquitin is a key component of the regulatory network that maintains gene expression in eukaryotes, yet the molecular mechanism(s) by which non-degradative ubiquitination modulates transcriptional activator (TA) function is unknown. Here endogenous p53, a stress-activated transcription factor required to maintain health, is stably monoubiquitinated, following pathway activation by IR or Nutlin-3 and localized to the nucleus where it becomes tightly associated with chromatin. Comparative structure-function analysis and in silico modelling demonstrate a direct role for DNA-binding domain (DBD) monoubiquitination in TA activation. When attached to the DBD of either p53, or a second TA IRF-1, ubiquitin is orientated towards, and makes contact with, the DNA. The contact is made between a predominantly cationic surface on ubiquitin and the anionic DNA. Our data demonstrate an unexpected role for ubiquitin in the mechanism of TA-activity enhancement and provides insight into a new level of transcriptional regulation.


Assuntos
DNA/química , Fator Regulador 1 de Interferon/química , Proteínas Proto-Oncogênicas c-mdm2/química , Transativadores/química , Proteína Supressora de Tumor p53/química , Ubiquitina/química , Linhagem Celular Tumoral , Cromatina/química , Cromatina/metabolismo , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Humanos , Imidazóis/farmacologia , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Melanócitos/citologia , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Modelos Moleculares , Piperazinas/farmacologia , Ligação Proteica , Domínios Proteicos , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Termodinâmica , Transativadores/genética , Transativadores/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
9.
Proteomics ; 16(17): 2327-44, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27273042

RESUMO

Drugs targeting MDM2's hydrophobic pocket activate p53. However, these agents act allosterically and have agonist effects on MDM2's protein interaction landscape. Dominant p53-independent MDM2-drug responsive-binding proteins have not been stratified. We used as a variable the differential expression of MDM2 protein as a function of cell density to identify Nutlin-3 responsive MDM2-binding proteins that are perturbed independent of cell density using SWATH-MS. Dihydrolipoamide dehydrogenase, the E3 subunit of the mitochondrial pyruvate dehydrogenase complex, was one of two Nutlin-3 perturbed proteins identified fours hour posttreatment at two cell densities. Immunoblotting confirmed that dihydrolipoamide dehydrogenase was induced by Nutlin-3. Depletion of MDM2 using siRNA also elevated dihydrolipoamide dehydrogenase in Nutlin-3 treated cells. Mitotracker confirmed that Nutlin-3 inhibits mitochondrial activity. Enrichment of mitochondria using TOM22+ immunobeads and TMT labeling defined key changes in the mitochondrial proteome after Nutlin-3 treatment. Proximity ligation identified rearrangements of cellular protein-protein complexes in situ. In response to Nutlin-3, a reduction of dihydrolipoamide dehydrogenase/dihydrolipoamide acetyltransferase protein complexes highlighted a disruption of the pyruvate dehydrogenase complex. This coincides with an increase in MDM2/dihydrolipoamide dehydrogenase complexes in the nucleus that was further enhanced by the nuclear export inhibitor Leptomycin B. The data suggest one therapeutic impact of MDM2 drugs might be on the early perturbation of specific protein-protein interactions within the mitochondria. This methodology forms a blueprint for biomarker discovery that can identify rearrangements of MDM2 protein-protein complexes in drug-treated cells.


Assuntos
Di-Hidrolipoamida Desidrogenase/metabolismo , Imidazóis/farmacologia , Mitocôndrias/efeitos dos fármacos , Piperazinas/farmacologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Células HCT116 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo
10.
Mol Cell Proteomics ; 14(11): 2973-87, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26330542

RESUMO

CHIP is a tetratricopeptide repeat (TPR) domain protein that functions as an E3-ubiquitin ligase. As well as linking the molecular chaperones to the ubiquitin proteasome system, CHIP also has a docking-dependent mode where it ubiquitinates native substrates, thereby regulating their steady state levels and/or function. Here we explore the effect of Hsp70 on the docking-dependent E3-ligase activity of CHIP. The TPR-domain is revealed as a binding site for allosteric modulators involved in determining CHIP's dynamic conformation and activity. Biochemical, biophysical and modeling evidence demonstrate that Hsp70-binding to the TPR, or Hsp70-mimetic mutations, regulate CHIP-mediated ubiquitination of p53 and IRF-1 through effects on U-box activity and substrate binding. HDX-MS was used to establish that conformational-inhibition-signals extended from the TPR-domain to the U-box. This underscores inter-domain allosteric regulation of CHIP by the core molecular chaperones. Defining the chaperone-associated TPR-domain of CHIP as a manager of inter-domain communication highlights the potential for scaffolding modules to regulate, as well as assemble, complexes that are fundamental to protein homeostatic control.


Assuntos
Proteínas de Choque Térmico HSP70/genética , Fator Regulador 1 de Interferon/genética , Linfócitos/metabolismo , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética , Regulação Alostérica , Sítios de Ligação , Linhagem Celular Tumoral , Expressão Gênica , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Fator Regulador 1 de Interferon/metabolismo , Cinética , Linfócitos/citologia , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
11.
Anal Chem ; 87(6): 3231-8, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25629302

RESUMO

Thermally induced conformational transitions of three proteins of increasing intrinsic disorder-cytochrome c, the tumor suppressor protein p53 DNA binding domain (p53 DBD), and the N-terminus of the oncoprotein murine double minute 2 (NT-MDM2)-have been studied by native mass spectrometry and variable-temperature drift time ion mobility mass spectrometry (VT-DT-IM-MS). Ion mobility measurements were carried out at temperatures ranging from 200 to 571 K. Multiple conformations are observable over several charge states for all three monomeric proteins, and for cytochrome c, dimers of significant intensity are also observed. Cytochrome c [M + 5H](5+) ions present in one conformer of CCS ∼1200 Å(2), undergoing compaction in line with the reported Tmelt = 360.15 K before slight unfolding at 571 K. The more extended [M + 7H](7+) cytochrome c monomer presents as two conformers undergoing similar compaction and structural rearrangements, prior to thermally induced unfolding. The [D + 11H](11+) dimer presents as two conformers, which undergo slight structural compaction or annealing before dissociation. p53 DBD follows a trend of structural collapse before an increase in the observed collision cross section (CCS), akin to that observed for cytochrome c but proceeding more smoothly. At 300 K, the monomeric charge states present in two conformational families, which compact to one conformer of CCS ∼1750 Å(2) at 365 K, in line with the low solution Tmelt = 315-317 K. The protein then extends to produce either a broad unresolved CCS distribution or, for z > 9, two conformers. NT-MDM2 exhibits a greater number of structural rearrangements, displaying charge-state-dependent unfolding pathways. DT-IM-MS experiments at 200 K resolve multiple conformers. Low charge state species of NT-MDM2 present as a single compact conformational family centered on CCS ∼1250 Å(2) at 300 K. This undergoes conformational tightening in line with the solution Tmelt = 348 K before unfolding at the highest temperatures. The more extended charge states present in two or more conformers at room temperature, undergoing thermally induced unfolding before significant structural collapse or annealing at high temperatures. Variable-temperature IM-MS is here shown to be an exciting approach to discern protein unfolding pathways for conformationally diverse proteins.


Assuntos
Citocromos c/química , Espectrometria de Massas/métodos , Proteínas Proto-Oncogênicas c-mdm2/química , Temperatura , Proteína Supressora de Tumor p53/química , Animais , DNA/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Proteína Supressora de Tumor p53/metabolismo
12.
Cell Signal ; 26(6): 1243-57, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24583282

RESUMO

Linear motifs mediate protein-protein interactions (PPI) that allow expansion of a target protein interactome at a systems level. This study uses a proteomics approach and linear motif sub-stratifications to expand on PPIs of MDM2. MDM2 is a multi-functional protein with over one hundred known binding partners not stratified by hierarchy or function. A new linear motif based on a MDM2 interaction consensus is used to select novel MDM2 interactors based on Nutlin-3 responsiveness in a cell-based proteomics screen. MDM2 binds a subset of peptide motifs corresponding to real proteins with a range of allosteric responses to MDM2 ligands. We validate cyclophilin B as a novel protein with a consensus MDM2 binding motif that is stabilised by Nutlin-3 in vivo, thus identifying one of the few known interactors of MDM2 that is stabilised by Nutlin-3. These data invoke two modes of peptide binding at the MDM2 N-terminus that rely on a consensus core motif to control the equilibrium between MDM2 binding proteins. This approach stratifies MDM2 interacting proteins based on the linear motif feature and provides a new biomarker assay to define clinically relevant Nutlin-3 responsive MDM2 interactors.


Assuntos
Ciclofilinas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Ligação Competitiva , Sequência Consenso , Humanos , Imidazóis/farmacologia , Células MCF-7 , Modelos Moleculares , Dados de Sequência Molecular , Piperazinas/farmacologia , Ligação Proteica , Desnaturação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores
13.
Biochem J ; 449(3): 707-17, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23134341

RESUMO

Understanding the determinants for site-specific ubiquitination by E3 ligase components of the ubiquitin machinery is proving to be a challenge. In the present study we investigate the role of an E3 ligase docking site (Mf2 domain) in an intrinsically disordered domain of IRF-1 [IFN (interferon) regulatory factor-1], a short-lived IFNγ-regulated transcription factor, in ubiquitination of the protein. Ubiquitin modification of full-length IRF-1 by E3 ligases such as CHIP [C-terminus of the Hsc (heat-shock cognate) 70-interacting protein] and MDM2 (murine double minute 2), which dock to the Mf2 domain, was specific for lysine residues found predominantly in loop structures that extend from the DNA-binding domain, whereas no modification was detected in the more conformationally flexible C-terminal half of the protein. The E3 docking site was not available when IRF-1 was in its DNA-bound conformation and cognate DNA-binding sequences strongly suppressed ubiquitination, highlighting a strict relationship between ligase binding and site-specific modification at residues in the DNA-binding domain. Hyperubiquitination of a non-DNA-binding mutant supports a mechanism where an active DNA-bound pool of IRF-1 is protected from polyubiquitination and degradation.


Assuntos
DNA/metabolismo , Fator Regulador 1 de Interferon/química , Fator Regulador 1 de Interferon/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Linhagem Celular , Humanos , Fator Regulador 1 de Interferon/genética , Lisina/química , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
14.
Proc Natl Acad Sci U S A ; 109(21): 8073-8, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22556265

RESUMO

The tumor suppressor protein, p53, is either mutated or absent in >50% of cancers and is negatively regulated by the mouse double minute (MDM2) protein. Understanding and inhibition of the MDM2-p53 interaction are, therefore, critical for developing novel chemotherapeutics, which are currently limited because of a lack of appropriate study tools. We present a nanosensing approach to investigate full-length MDM2 interactions with p53, thus providing an allosteric assay for identifying binding ligands. Surface-enhanced Raman scattering (SERS)-active nanoparticles, functionalized with a p53 peptide mimic (peptide 12.1), display biologically specific aggregation following addition of MDM2. Nanoparticle assembly is competitively inhibited by the N-terminal MDM2-binding ligands peptide 12.1 and Nutlin-3. This study reports nanoparticle assembly through specific protein-peptide interactions that can be followed by SERS. We demonstrate solution-based MDM2 allosteric interaction studies that use the full-length protein.


Assuntos
Técnicas Biossensoriais/métodos , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Nanotecnologia/métodos , Análise Espectral Raman/métodos , Regulação Alostérica , Animais , Dimerização , Desenho de Fármacos , Nanopartículas Metálicas/química , Camundongos , Neoplasias/diagnóstico , Neoplasias/metabolismo , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Prata/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteína Supressora de Tumor p53/metabolismo
15.
J Biol Chem ; 286(16): 14291-303, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21245151

RESUMO

The interferon-regulated transcription factor and tumor suppressor protein IRF-1 is predicted to be largely disordered outside of the DNA-binding domain. One of the advantages of intrinsically disordered protein domains is thought to be their ability to take part in multiple, specific but low affinity protein interactions; however, relatively few IRF-1-interacting proteins have been described. The recent identification of a functional binding interface for the E3-ubiquitin ligase CHIP within the major disordered domain of IRF-1 led us to ask whether this region might be employed more widely by regulators of IRF-1 function. Here we describe the use of peptide aptamer-based affinity chromatography coupled with mass spectrometry to define a multiprotein binding interface on IRF-1 (Mf2 domain; amino acids 106-140) and to identify Mf2-binding proteins from A375 cells. Based on their function as known transcriptional regulators, a selection of the Mf2 domain-binding proteins (NPM1, TRIM28, and YB-1) have been validated using in vitro and cell-based assays. Interestingly, although NPM1, TRIM28, and YB-1 all bind to the Mf2 domain, they have differing amino acid specificities, demonstrating the degree of combinatorial diversity and specificity available through linear interaction motifs.


Assuntos
Regulação da Expressão Gênica , Fator Regulador 1 de Interferon/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Linhagem Celular Tumoral , Cromatografia de Afinidade/métodos , Proteínas de Ligação a DNA/química , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/química , Nucleofosmina , Peptídeos/química , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Repressoras/química , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteína 28 com Motivo Tripartido , Proteína 1 de Ligação a Y-Box
16.
J Biol Chem ; 286(1): 607-19, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20947504

RESUMO

Characteristically for a regulatory protein, the IRF-1 tumor suppressor turns over rapidly with a half-life of between 20-40 min. This allows IRF-1 to reach new steady state protein levels swiftly in response to changing environmental conditions. Whereas CHIP (C terminus of Hsc70-interacting protein), appears to chaperone IRF-1 in unstressed cells, formation of a stable IRF-1·CHIP complex is seen under specific stress conditions. Complex formation, in heat- or heavy metal-treated cells, is accompanied by a decrease in IRF-1 steady state levels and an increase in IRF-1 ubiquitination. CHIP binds directly to an intrinsically disordered domain in the central region of IRF-1 (residues 106-140), and this site is sufficient to form a stable complex with CHIP in cells and to compete in trans with full-length IRF-1, leading to a reduction in its ubiquitination. The study reveals a complex relationship between CHIP and IRF-1 and highlights the role that direct binding or "docking" of CHIP to its substrate(s) can play in its mechanism of action as an E3 ligase.


Assuntos
Fator Regulador 1 de Interferon/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Motivos de Aminoácidos , Sequência de Aminoácidos , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP70/metabolismo , Resposta ao Choque Térmico , Humanos , Fator Regulador 1 de Interferon/química , Metais Pesados/toxicidade , Dados de Sequência Molecular , Fragmentos de Peptídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Proteínas Supressoras de Tumor/química , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos
17.
J Biol Chem ; 285(49): 38348-61, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-20817723

RESUMO

IRF-1 is a tumor suppressor protein that activates gene expression from a range of promoters in response to stimuli spanning viral infection to DNA damage. Studies on the post-translational regulation of IRF-1 have been hampered by a lack of suitable biochemical tools capable of targeting the endogenous protein. In this study, phage display technology was used to develop a monoclonal nanobody targeting the C-terminal Mf1 domain (residues 301-325) of IRF-1. Intracellular expression of the nanobody demonstrated that the transcriptional activity of IRF-1 is constrained by the Mf1 domain as nanobody binding gave an increase in expression from IRF-1-responsive promoters of up to 8-fold. Furthermore, Mf1-directed nanobodies have revealed an unexpected function for this domain in limiting the rate at which the IRF-1 protein is degraded. Thus, the increase in IRF-1 transcriptional activity observed on nanobody binding is accompanied by a significant reduction in the half-life of the protein. In support of the data obtained using nanobodies, a single point mutation (P325A) involving the C-terminal residue of IRF-1 has been identified, which results in greater transcriptional activity and a significant increase in the rate of degradation. The results presented here support a role for the Mf1 domain in limiting both IRF-1-dependent transcription and the rate of IRF-1 turnover. In addition, the data highlight a route for activation of downstream genes in the IRF-1 tumor suppressor pathway using biologics.


Assuntos
Anticorpos Monoclonais/farmacologia , Fator Regulador 1 de Interferon/metabolismo , Anticorpos de Cadeia Única/farmacologia , Proteínas Supressoras de Tumor/metabolismo , Células HeLa , Humanos , Fator Regulador 1 de Interferon/genética , Mutação Puntual , Estrutura Terciária de Proteína , Transcrição Gênica/efeitos dos fármacos , Proteínas Supressoras de Tumor/genética
18.
J Chem Biol ; 2(3): 113-29, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19568783

RESUMO

The tumor suppressor p53 has evolved a MDM2-dependent feedback loop that promotes p53 protein degradation through the ubiquitin-proteasome system. MDM2 is an E3-RING containing ubiquitin ligase that catalyzes p53 ubiquitination by a dual-site mechanism requiring ligand occupation of its N-terminal hydrophobic pocket, which then stabilizes MDM2 binding to the ubiquitination signal in the DNA-binding domain of p53. A unique pseudo-substrate motif or "lid" in MDM2 is adjacent to its N-terminal hydrophobic pocket, and we have evaluated the effects of the flexible lid on the dual-site ubiquitination reaction mechanism catalyzed by MDM2. Deletion of this pseudo-substrate motif promotes MDM2 protein thermoinstability, indicating that the site can function as a positive regulatory element. Phospho-mimetic mutation in the pseudo-substrate motif at codon 17 (MDM2(S17D)) stabilizes the binding of MDM2 towards two distinct peptide docking sites within the p53 tetramer and enhances p53 ubiquitination. Molecular modeling orientates the phospho-mimetic pseudo-substrate motif in equilibrium over a charged surface patch on the MDM2 at Arg(97)/Lys(98), and mutation of these residues to the MDM4 equivalent reverses the activating effect of the phospho-mimetic mutation on MDM2 function. These data highlight the ability of the pseudo-substrate motif to regulate the allosteric interaction between the N-terminal hydrophobic pocket of MDM2 and its central acidic domain, which stimulates the E3 ubiquitin ligase function of MDM2. This model of MDM2 regulation implicates an as yet undefined lid-kinase as a component of pro-oncogenic pathways that stimulate the E3 ubiquitin ligase function of MDM2 in cells.

19.
J Biol Chem ; 284(38): 25889-99, 2009 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-19502235

RESUMO

Our understanding of the post-translational processes involved in regulating the interferon regulatory factor-1 (IRF-1) tumor suppressor protein is limited. The introduction of mutations within the C-terminal Mf1 domain (amino acids 301-325) impacts on IRF-1-mediated gene repression and growth suppression as well as the rate of IRF-1 degradation. However, nothing is known about the proteins that interact with this region to modulate IRF-1 function. A biochemical screen for Mf1-interacting proteins has identified an LXXLL motif that is required for binding of Hsp70 family members and cooperation with Hsp90 to regulate IRF-1 turnover and activity. These conclusions are supported by the finding that Hsp90 inhibitors suppress IRF-1-dependent transcription shortly after treatment, although at later time points inhibition of Hsp90 leads to an Hsp70-dependent depletion of nuclear IRF-1. Conversely, the half-life of IRF-1 is increased by Hsp90 in an ATPase-dependent manner leading to the accumulation of nuclear but not cytoplasmic IRF-1. This study begins to elucidate the role of the Mf1 domain of IRF-1 in orchestrating the recruitment of regulatory factors that can impact on both its turnover and transcriptional activity.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Fator Regulador 1 de Interferon/metabolismo , Transcrição Gênica/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Motivos de Aminoácidos/fisiologia , Linhagem Celular , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP90/genética , Humanos , Fator Regulador 1 de Interferon/genética , Mutação , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Proteínas Supressoras de Tumor/genética
20.
Cell Signal ; 21(10): 1479-87, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19450680

RESUMO

The interferon regulated transcription factor IRF-1 is a tumour suppressor protein that is activated in response to viral infection and cell signalling activated by double stranded DNA lesions. IRF-1 has a short half-life (t(0.5) 20-40 min) allowing rapid changes in steady state levels by modulating its rate of degradation and/or synthesis. However, little is known about the pathway(s) leading to IRF-1 protein degradation or what determines the rate of degradation in cells. Here we establish a role for discrete motifs in the enhancer domain of IRF-1 in directing polyubiquitination and degradation. By studying the structure of the enhancer domain as related to its role in the turnover of IRF-1 we have demonstrated that this region is not subject to modification by ubiquitin but rather that it contains both an ubiquitination signal and a distinct degradation signal. Removal of the C-terminal 70 amino acids from IRF-1 inhibits both its degradation and polyubiquitination, whereas removal of the C-terminal 25 amino acids inhibits degradation of the protein but does not prevent its ubiquitination. Furthermore, consistent with the C-terminus being involved in targeting or recognition by an E3-ligase or associated protein(s) the enhancer domain can act in trans to inhibit IRF-1 ubiquitination by endogenous E3-ligase activity. The identification of structural determinants that signals IRF-1 polyubiquitination and which can be uncoupled from IRF-1 degradation lends support to the idea that the degradation of selective substrates can be regulated at multiple steps in the ubiquitin-proteasome system.


Assuntos
Fator Regulador 1 de Interferon/metabolismo , Ubiquitinação , Linhagem Celular Tumoral , Meia-Vida , Humanos , Fator Regulador 1 de Interferon/química , Proteínas Mutantes/metabolismo , Proteínas Mutantes/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA