Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 12(1)2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30621037

RESUMO

The solid-gas phase photo-catalytic activities of rutile TiO2 and TiOn (1 < n < 2) sub-oxide phases have been evaluated. Varying concentrations of Ti3+ defects were introduced into the rutile polymorph of titanium dioxide through carbo-thermal reduction at temperatures ranging from 350 °C to 1300 °C. The resulting sub-oxides formed were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, impedance spectroscopy and UV-visible diffuse reflectance spectroscopy. The presence of Ti3+ in rutile exposed to high reduction temperatures was confirmed by X-ray diffraction. In addition, a Ti3+-Ti4+ system was demonstrated to enhance the photo-catalytic properties of rutile for the degradation of the air pollutants NO2 and CO2 under UV irradiation of wavelengths (λ) 376⁻387 nm and 381⁻392 nm. The optimum reduction temperature for photo-catalytic activity was within the range 350⁻400 °C and attributed to improved charge-separation. The materials that were subject to carbo-thermal reduction at temperatures of 350 °C and 400 °C exhibited electrical conductivities over one hundred times higher compared to the non-reduced rutile. The results highlight that sub-oxide phases form an important alternative approach to doping with other elements to improve the photo-catalytic performance of TiO2. Such materials are important for applications such as self-cleaning where particles can be incorporated into surface coatings.

2.
J Mass Spectrom ; 49(8): 716-26, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25044899

RESUMO

This paper describes a novel methodology for the real-time study of solid-gas phase photocatalytic reactions in situ. A novel reaction chamber has been designed and developed to facilitate the investigation of photoactive materials under different gas compositions. UV irradiation in the wavelength of ranges 376-387 and 381-392 nm was provided using specially designed high efficiency light emitting diode arrays. The experiments used air containing 190 ppm NO2 in a moist environment with a relative humidity of 0.1%. Photocatalytic samples consisting of pressed pellets of rutile and anatase crystalline forms of TiO2 were monitored over a period of 150 min. An ultra-high vacuum right angled bleed valve allowed a controlled flow of gas from the main reaction chamber at atmospheric pressure to a residual gas analyser operating at a vacuum of 10(-5) mbar. The apparatus and methodology have been demonstrated to provide high sensitivity (ppb). The rate of degradation of NO2 attributed to reaction at the TiO2 surface was sensitive to both crystal structures (anatase or rutile) and wavelength of irradiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA