Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Investig Arterioscler ; 36(5): 286-298, 2024.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-38402026

RESUMO

INTRODUCTION: Cardiovascular calcification is an important public health issue with an unmeet therapeutic need. We had previously shown that lysyl oxidase (LOX) activity critically influences vascular wall smooth muscle cells (VSMCs) and valvular interstitial cells (VICs) calcification by affecting extracellular matrix remodeling. We have delved into the participation of LOX in atherosclerosis and vascular calcification, as well as in the mineralization of the aortic valve. METHODS: Immunohistochemical and expression studies were carried out in human atherosclerotic lesions and experimental models, valves from patients with aortic stenosis, VICs, and in a genetically modified mouse model that overexpresses LOX in CMLV (TgLOXCMLV). Hyperlipemia and atherosclerosis was induced in mice through the administration of adeno-associated viruses encoding a PCSK9 mutated form (AAV-PCSK9D374Y) combined with an atherogenic diet. RESULTS: LOX expression is increased in the neointimal layer of atherosclerotic lesions from human coronary arteries and in VSMC-rich regions of atheromas developed both in the brachiocephalic artery of control (C57BL/6J) animals transduced with PCSK9D374Y and in the aortic root of ApoE-/- mice. In TgLOXCMLV mice, PCSK9D374Y transduction did not significantly alter the enhanced aortic expression of genes involved in matrix remodeling, inflammation, oxidative stress and osteoblastic differentiation. Likewise, LOX transgenesis did not alter the size or lipid content of atherosclerotic lesions in the aortic arch, brachiocephalic artery and aortic root, but exacerbated calcification. Among lysyl oxidase isoenzymes, LOX is the most expressed member of this family in highly calcified human valves, colocalizing with RUNX2 in VICs. The lower calcium deposition and decreased RUNX2 levels triggered by the overexpression of the nuclear receptor NOR-1 in VICs was associated with a reduction in LOX. CONCLUSIONS: Our results show that LOX expression is increased in atherosclerotic lesions, and that overexpression of this enzyme in VSMC does not affect the size of the atheroma or its lipid content, but it does affect its degree of calcification. Further, these data suggest that the decrease in calcification driven by NOR-1 in VICs would involve a reduction in LOX. These evidences support the interest of LOX as a therapeutic target in cardiovascular calcification.


Assuntos
Estenose da Valva Aórtica , Aterosclerose , Modelos Animais de Doenças , Hipercolesterolemia , Camundongos Endogâmicos C57BL , Músculo Liso Vascular , Miócitos de Músculo Liso , Proteína-Lisina 6-Oxidase , Calcificação Vascular , Animais , Humanos , Aterosclerose/patologia , Aterosclerose/genética , Proteína-Lisina 6-Oxidase/metabolismo , Proteína-Lisina 6-Oxidase/genética , Camundongos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Calcificação Vascular/patologia , Calcificação Vascular/genética , Calcificação Vascular/etiologia , Calcificação Vascular/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Hipercolesterolemia/complicações , Estenose da Valva Aórtica/patologia , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/genética , Valva Aórtica/patologia , Valva Aórtica/metabolismo , Masculino , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Camundongos Transgênicos , Túnica Íntima/patologia , Túnica Íntima/metabolismo , Dieta Aterogênica/efeitos adversos
2.
Transl Res ; 264: 1-14, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37690706

RESUMO

Cardiovascular calcification is a significant public health issue whose pathophysiology is not fully understood. NOR-1 regulates critical processes in cardiovascular remodeling, but its contribution to ectopic calcification is unknown. NOR-1 was overexpressed in human calcific aortic valves and calcified atherosclerotic lesions colocalizing with RUNX2, a factor essential for osteochondrogenic differentiation and calcification. NOR-1 and osteogenic markers were upregulated in calcifying human valvular interstitial cells (VICs) and human vascular smooth muscle cells (VSMCs). Gain- and loss-of-function approaches demonstrated that NOR-1 negatively modulates the expression of osteogenic genes relevant for the osteogenic transdifferentiation (RUNX2, IL-6, BMP2, and ALPL) and calcification of VICs. VSMCs from transgenic mice overexpressing NOR-1 in these cells (TgNOR-1VSMC) expressed lower basal levels of osteogenic genes (IL-6, BMP2, ALPL, OPN) than cells from WT littermates, and their upregulation by a high-phosphate osteogenic medium (OM) was completely prevented by NOR-1 transgenesis. Consistently, this was associated with a dramatic reduction in the calcification of both transgenic VSMCs and aortic rings from TgNOR-1VSMC mice exposed to OM. Atherosclerosis and calcification were induce in mice by the administration of AAV-PCSK9D374Y and a high-fat/high-cholesterol diet. Challenged-TgNOR-1VSMC mice exhibited decreased vascular expression of osteogenic markers, and both less atherosclerotic burden (assessed in whole aorta and lesion size in aortic arch and brachiocephalic artery) and less vascular calcification (assessed either by near-infrared fluorescence imaging or histological analysis) than WT mice. Our data indicate that NOR-1 negatively modulates the expression of genes critically involved in the osteogenic differentiation of VICs and VSMCs, thereby restraining ectopic cardiovascular calcification.


Assuntos
Estenose da Valva Aórtica , Calcificação Vascular , Animais , Humanos , Camundongos , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Interleucina-6/genética , Músculo Liso Vascular/fisiologia , Osteogênese/genética , Pró-Proteína Convertase 9/genética , Regulação para Cima , Calcificação Vascular/genética , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia
3.
Clin Investig Arterioscler ; 34(4): 229-243, 2022.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-35581107

RESUMO

Vascular cells and their interaction with inflammatory cells and the immune system play a key role in pathological vascular remodeling. A large number of genes and proteins regulated in a coordinated manner by a small number of transcription factors are involved in this process. In recent years, research on a small subfamily of transcription factors, the NR4A subfamily, has had a major impact on our understanding of vascular biology. The NR4A1 (Nur77), NR4A2 (Nurr1) and NR4A3 (NOR-1) receptors are products of early response genes whose expression is induced by multiple pathophysiological and physical stimuli. Their wide distribution in different tissues and cells places them in the control of numerous processes such as cell differentiation, proliferation, survival and apoptosis, as well as inflammation and the metabolism of lipids and carbohydrates. This review analyzes the role of these receptors, particularly NOR-1, in pathological vascular remodeling associated with atherosclerosis, abdominal aortic aneurysm and pulmonary arterial hypertension.


Assuntos
Aterosclerose , Membro 3 do Grupo A da Subfamília 4 de Receptores Nucleares , Receptores de Esteroides , Aterosclerose/patologia , Humanos , Inflamação/patologia , Neurônios/metabolismo , Neurônios/patologia , Membro 3 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Remodelação Vascular
4.
Clin Sci (Lond) ; 134(3): 359-377, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31985010

RESUMO

Hypertensive cardiac hypertrophy (HCH) is a common cause of heart failure (HF), a major public health problem worldwide. However, the molecular bases of HCH have not been completely elucidated. Neuron-derived orphan receptor-1 (NOR-1) is a nuclear receptor whose role in cardiac remodelling is poorly understood. The aim of the present study was to generate a transgenic mouse over-expressing NOR-1 in the heart (TgNOR-1) and assess the impact of this gain-of-function on HCH. The CAG promoter-driven transgenesis led to viable animals that over-expressed NOR-1 in the heart, mainly in cardiomyocytes and also in cardiofibroblasts. Cardiomyocytes from TgNOR-1 exhibited an enhanced cell surface area and myosin heavy chain 7 (Myh7)/Myh6 expression ratio, and increased cell shortening elicited by electric field stimulation. TgNOR-1 cardiofibroblasts expressed higher levels of myofibroblast markers than wild-type (WT) cells (α 1 skeletal muscle actin (Acta1), transgelin (Sm22α)) and were more prone to synthesise collagen and migrate. TgNOR-1 mice experienced an age-associated remodelling of the left ventricle (LV). Angiotensin II (AngII) induced the cardiac expression of NOR-1, and NOR-1 transgenesis exacerbated AngII-induced cardiac hypertrophy and fibrosis. This effect was associated with the up-regulation of hypertrophic (brain natriuretic peptide (Bnp), Acta1 and Myh7) and fibrotic markers (collagen type I α 1 chain (Col1a1), Pai-1 and lysyl oxidase-like 2 (Loxl2)). NOR-1 transgenesis up-regulated two key genes involved in cardiac hypertrophy (Myh7, encoding for ß-myosin heavy chain (ß-MHC)) and fibrosis (Loxl2, encoding for the extracellular matrix (ECM) modifying enzyme, Loxl2). Interestigly, in transient transfection assays, NOR-1 drove the transcription of Myh7 and Loxl2 promoters. Our findings suggest that NOR-1 is involved in the transcriptional programme leading to HCH.


Assuntos
Cardiomegalia/genética , Cardiomegalia/patologia , Progressão da Doença , Regulação da Expressão Gênica , Miocárdio/patologia , Membro 3 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Angiotensina II , Animais , Biomarcadores/metabolismo , Cardiomegalia/diagnóstico por imagem , Cardiomegalia/fisiopatologia , Colágeno/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Modelos Animais de Doenças , Eletrocardiografia , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Humanos , Inflamação/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Transcrição Gênica , Remodelação Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA