Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Environ Int ; 185: 108528, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422874

RESUMO

BACKGROUND: Diesel exhaust and respirable dust exposures in the mining industry have not been studied in depth with respect to non-malignant respiratory disease including chronic obstructive pulmonary disease (COPD), with most available evidence coming from other settings. OBJECTIVES: To assess the relationship between occupational diesel exhaust and respirable dust exposures and COPD mortality, while addressing issues of survivor bias in exposed miners. METHODS: The study population consisted of 11,817 male workers from the Diesel Exhaust in Miners Study II, followed from 1947 to 2015, with 279 observed COPD deaths. We fit Cox proportional hazards models for the relationship between respirable elemental carbon (REC) and respirable dust (RD) exposure and COPD mortality. To address healthy worker survivor bias, we leveraged the parametric g-formula to assess effects of hypothetical interventions on both exposures. RESULTS: Cox models yielded elevated estimates for the associations between average intensity of REC and RD and COPD mortality, with hazard ratios (HR) corresponding to an interquartile range width increase in exposure of 1.46 (95 % confidence interval (CI): 1.12, 1.91) and 1.20 (95 % CI: 0.96, 1.49), respectively for each exposure. HRs for cumulative exposures were negative for both REC and RD. Based on results from the parametric g-formula, the risk ratio (RR) for COPD mortality comparing risk under an intervention eliminating REC to the observed risk was 0.85 (95 % CI: 0.55, 1.06), equivalent to an attributable risk of 15 %. The corresponding RR comparing risk under an intervention eliminating RD to the observed risk was 0.93 (95 % CI: 0.56, 1.31). CONCLUSIONS: Our findings, based on data from a cohort of nonmetal miners, are suggestive of an increased risk of COPD mortality associated with REC and RD, as well as evidence of survivor bias in this population leading to negative associations between cumulative exposures and COPD mortality in traditional regression analysis.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Doença Pulmonar Obstrutiva Crônica , Humanos , Masculino , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Poluentes Ocupacionais do Ar/toxicidade , Emissões de Veículos/análise , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Carbono/análise , Poeira/análise
2.
Intensive Care Med ; 49(8): 957-965, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37470831

RESUMO

PURPOSE: Exposures to ambient air pollutants may prime the lung enhancing risk of acute respiratory distress syndrome (ARDS) in sepsis. Our objective was to determine the association of short-, medium-, and long-term pollutant exposures and ARDS risk in critically ill sepsis patients. METHODS: We analyzed a prospective cohort of 1858 critically ill patients with sepsis, and estimated short- (3 days), medium- (6 weeks), and long- (5 years) term exposures to ozone, nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), particulate matter < 2.5 µm (PM2.5), and PM < 10 µm (PM10) using weighted averages of daily levels from monitors within 50 km of subjects' residences. Subjects were followed for 6 days for ARDS by the Berlin Criteria. The association between each pollutant and ARDS was determined using multivariable logistic regression adjusting for preselected confounders. In 764 subjects, we measured plasma concentrations of inflammatory proteins at presentation and tested for an association between pollutant exposure and protein concentration via linear regression. RESULTS: ARDS developed in 754 (41%) subjects. Short- and long-term exposures to SO2, NO2, and PM2.5 were associated with ARDS risk (SO2: odds ratio (OR) for the comparison of the 75-25th long-term exposure percentile 1.43 (95% confidence interval (CI) 1.16, 1.77); p < 0.01; NO2: 1.36 (1.06, 1.74); p = 0.04, PM2.5: 1.21 (1.04, 1.41); p = 0.03). Long-term exposures to these three pollutants were also associated with plasma interleukin-1 receptor antagonist and soluble tumor necrosis factor receptor-1 concentrations. CONCLUSION: Short and long-term exposures to ambient SO2, PM2.5, and NO2 are associated with increased ARDS risk in sepsis, representing potentially modifiable environmental risk factors for sepsis-associated ARDS.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Síndrome do Desconforto Respiratório , Sepse , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Estudos Prospectivos , Estado Terminal , Material Particulado/efeitos adversos , Material Particulado/análise , Síndrome do Desconforto Respiratório/etiologia , Sepse/complicações
5.
Emerg Infect Dis ; 27(5): 1266-1273, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33755007

RESUMO

We review the interaction between coronavirus disease (COVID-19) and coccidioidomycosis, a respiratory infection caused by inhalation of Coccidioides fungal spores in dust. We examine risk for co-infection among construction and agricultural workers, incarcerated persons, Black and Latino populations, and persons living in high dust areas. We further identify common risk factors for co-infection, including older age, diabetes, immunosuppression, racial or ethnic minority status, and smoking. Because these diseases cause similar symptoms, the COVID-19 pandemic might exacerbate delays in coccidioidomycosis diagnosis, potentially interfering with prompt administration of antifungal therapies. Finally, we examine the clinical implications of co-infection, including severe COVID-19 and reactivation of latent coccidioidomycosis. Physicians should consider coccidioidomycosis as a possible diagnosis when treating patients with respiratory symptoms. Preventive measures such as wearing face masks might mitigate exposure to dust and severe acute respiratory syndrome coronavirus 2, thereby protecting against both infections.


Assuntos
COVID-19 , Coccidioidomicose , Coinfecção , Idoso , Coccidioidomicose/epidemiologia , Etnicidade , Humanos , Grupos Minoritários , Pandemias , SARS-CoV-2 , Estados Unidos/epidemiologia
6.
Clin Chest Med ; 41(4): 771-776, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33153694

RESUMO

Catastrophic wildfires are increasing around the globe as climate change continues to progress. Another risk factor for large wildfires in the western United States is a legacy of fire suppression that has allowed overgrowth of underbrush and small trees in forests where periodic lightning-sparked wildfires are part of the natural ecosystem. Wildfire smoke contains CO2, CO, NOx, particulate matter, complex hydrocarbons (including polycyclic aromatic hydrocarbons), and irritant gases, including many of the same toxic and carcinogenic substances as cigarette smoke. The public need clear and consistent messaging to understand that wildland fire smoke poses a health risk.


Assuntos
Saúde Pública/normas , Incêndios Florestais/estatística & dados numéricos , Humanos
7.
Environ Int ; 141: 105780, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32417614

RESUMO

RATIONALE: Chronic air pollutant exposure has been associated with development of Acute Respiratory Distress Syndrome (ARDS) in patients at risk, particularly from severe trauma. We recently reported that shorter peripheral blood leukocyte (PBL) telomere length (TL) was associated with worse outcomes and higher severity of ARDS in critically ill patients. Since most major air pollutants are potent oxidants that can induce cellular oxidative stress, and oxidative stress can accelerate telomere shortening, we hypothesized that higher levels of chronic air pollutant exposure would be associated with shorter telomere length in critically ill patients including patients with ARDS. METHODS: PBL-TL was measured in genomic DNA collected on the morning of ICU day 2 in 772 critically ill patients enrolled in a prospective observational study. Exposures to air pollutants including ozone (warm-season only), particulate matter < 2.5 µm (PM2.5), particulate matter < 10 µm (PM10), CO, NO2 and SO2, were estimated by weighted average of daily levels from all monitors within 50 km of each patient's residential address for the 3 years prior to admission. Associations of each air pollutant exposure and PBL-TL were investigated by multivariable linear regression models adjusting for age, ethnicity, sex, smoking history, alcohol abuse, insurance status, median household income, history of malignancy and APACHE II. RESULTS: Contrary to our hypothesis, TL increased across exposure quartiles in both ozone and PM2.5 analyses (p < 0.05). In a regression model controlling for potential confounders, long term ozone exposure was significantly associated with an increase in TL in the entire cohort (0.31 kb per 10 ppb), as well as in subgroups with sepsis, trauma and ARDS (all p < 0.05). In multivariable models, entire-year exposure to PM2.5, PM10, CO, NO2 and SO2 was not associated with TL after adjustment for potential confounders. In an analysis restricted to warm-season levels to assess the effect of seasonality, higher warm-season PM2.5 and CO exposures were independently associated with longer TL. CONCLUSIONS: Long-term exposure to ozone is associated with longer peripheral blood TL in critically ill patients. Further studies are needed to investigate the potential underlying mechanisms for this unexpected positive association between telomere length and air pollution exposure in critical illness.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Estado Terminal , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Ozônio/análise , Ozônio/toxicidade , Material Particulado/análise , Telômero
8.
Thorax ; 75(3): 220-226, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32079666

RESUMO

RATIONALE: There are no population-based studies from sub-Saharan Africa describing longitudinal lung function in adults. OBJECTIVES: To explore the lung function trajectories and their determinants, including the effects of air pollution exposures and the cleaner-burning biomass-fuelled cookstove intervention of the Cooking and Pneumonia Study (CAPS), in adults living in rural Malawi. METHODS: We assessed respiratory symptoms and exposures, spirometry and measured 48-hour personal exposure to fine particulate matter (PM2.5) and carbon monoxide (CO), on three occasions over 3 years. Longitudinal data were analysed using mixed-effects modelling by maximum likelihood estimation. MEASUREMENTS AND MAIN RESULTS: We recruited 1481 adults, mean (SD) age 43.8 (17.8) years, including 523 participants from CAPS households (271 intervention; 252 controls), and collected multiple spirometry and air pollution measurements for 654 (44%) and 929 (63%), respectively. Compared with Global Lung Function Initiative African-American reference ranges, mean (SD) FEV1 (forced expiratory volume in 1 s) and FVC (forced vital capacity) z-scores were -0.38 (1.14) and -0.19 (1.09). FEV1 and FVC were determined by age, sex, height, previous TB and body mass index, with FEV1 declining by 30.9 mL/year (95% CI: 21.6 to 40.1) and FVC by 38.3 mL/year (95% CI: 28.5 to 48.1). There was decreased exposure to PM2.5 in those with access to a cookstove but no effect on lung function. CONCLUSIONS: We did not observe accelerated lung function decline in this cohort of Malawian adults, compared with that reported in healthy, non-smoking populations from high-income countries; this suggests that the lung function deficits we measured in adulthood may have origins in early life.


Assuntos
Poluição do Ar em Ambientes Fechados/efeitos adversos , Exposição Ambiental/efeitos adversos , Pulmão/fisiopatologia , Doenças Respiratórias/epidemiologia , Adulto , Monóxido de Carbono/toxicidade , Culinária/instrumentação , Monitoramento Ambiental , Feminino , Volume Expiratório Forçado , Humanos , Estudos Longitudinais , Malaui/epidemiologia , Masculino , Pessoa de Meia-Idade , Material Particulado/toxicidade , Estudos Prospectivos , Doenças Respiratórias/etiologia , Doenças Respiratórias/fisiopatologia , População Rural , Avaliação de Sintomas , Capacidade Vital
10.
PLoS One ; 14(10): e0223263, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31574118

RESUMO

BACKGROUND: COPD is a common HIV comorbidity, and HIV-infected individuals have a higher incidence and earlier onset of COPD compared to HIV-uninfected individuals. While the pathogenesis of HIV-associated COPD is largely unknown, chronic inflammation may contribute. Four pneumoproteins known to be markers of lung injury and inflammation have been associated with COPD in HIV-uninfected individuals: PARC/CCL-18, SP-D, CC-16, and sRAGE. OBJECTIVE: To determine whether these pneumoproteins are also associated with pulmonary function and COPD Assessment Test (CAT) scores in HIV-infected individuals. METHODS: Associations between plasma pneumoprotein levels and pulmonary function were determined in a cross-sectional study of otherwise healthy HIV-infected individuals enrolled between September 2016 and June 2017. Covariates included HIV-associated (antiretroviral therapy, CD4 count, and viral load) and COPD-associated (smoking and BMI) covariates. RESULTS: Among 65 participants, 78.5% were male, 50.8% had undetectable viral load, and 76.9% were ever-smokers. Mean post-bronchodilator FEV1/FVC was 0.71, and mean DLco%predicted was 61%. Higher PARC/CCL-18 was associated with lower DLco%predicted and higher CAT score. Higher CC-16 was associated with lower DLco%predicted and lower FVC%predicted. CONCLUSIONS: This exploratory analysis is the first to characterize associations between these four pneumoproteins and pulmonary function in an HIV-infected cohort. Our findings suggest the pathogenesis of HIV-associated COPD may differ from that of non-HIV-associated COPD due to HIV-specific inflammatory changes affecting DLco. PARC/CCL-18 is associated with structural and functional pulmonary abnormalities and may be an important COPD biomarker candidate in HIV infection. Our study is a preliminary step toward finding clinically relevant COPD biomarkers in high-risk populations.


Assuntos
Biomarcadores , Infecções por HIV/metabolismo , Pneumopatias/metabolismo , Pneumopatias/fisiopatologia , Idoso , Estudos Transversais , Feminino , Infecções por HIV/complicações , Infecções por HIV/diagnóstico , Infecções por HIV/virologia , Humanos , Pneumopatias/etiologia , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia
12.
Environ Epidemiol ; 3(3): e048, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31342008

RESUMO

BACKGROUND: Maternal smoking during pregnancy is a risk factor for chronic disease later in life and has been associated with variability of DNA methylation at specific cytosine-phosphate-guanine (CpG) loci. We assessed the role of DNA methylation as a potential mediator of adverse effects of in utero tobacco smoke exposures on asthma outcomes in Latino children from the US mainland and Puerto Rico. METHODS: Relationships between self-reported exposure and DNA methylation at CpG loci previously reported to be associated with maternal smoking were assessed in a subsample consisting of 572 children aged 8-21 years (310 cases with asthma, 262 healthy controls), sampled from a larger asthma case-control study. Subsequently, we assessed associations between top loci and asthma-related outcomes, followed by mediation analysis for loci for which associations with outcomes were observed. RESULTS: Self-reported maternal smoking was associated with a -1.5% (95% confidence interval (CI) = -2.4%, -0.6%) lower methylation at CpG locus cg05575921 on the AHRR gene; a 1% increase in DNA methylation at the same locus resulted in an odds ratio (OR) of 0.90 (95% CI = 0.83, 0.96) for the odds of asthma. The OR for the indirect effect of maternal smoking on asthma mediated through methylation at the cg05575921 locus was 1.18 (95% CI = 1.07, 1.68), compared to the OR for the total effect of exposure in the parent study of 1.48 (95% CI = 1.03, 2.11). CONCLUSIONS: Our findings suggest potential mediation by DNA methylation in the association between maternal smoking during pregnancy and asthma status.

13.
Am J Respir Crit Care Med ; 199(11): 1312-1334, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31149852

RESUMO

Rationale: Workplace inhalational hazards remain common worldwide, even though they are ameliorable. Previous American Thoracic Society documents have assessed the contribution of workplace exposures to asthma and chronic obstructive pulmonary disease on a population level, but not to other chronic respiratory diseases. The goal of this document is to report an in-depth literature review and data synthesis of the occupational contribution to the burden of the major nonmalignant respiratory diseases, including airway diseases; interstitial fibrosis; hypersensitivity pneumonitis; other noninfectious granulomatous lung diseases, including sarcoidosis; and selected respiratory infections. Methods: Relevant literature was identified for each respiratory condition. The occupational population attributable fraction (PAF) was estimated for those conditions for which there were sufficient population-based studies to allow pooled estimates. For the other conditions, the occupational burden of disease was estimated on the basis of attribution in case series, incidence rate ratios, or attributable fraction within an exposed group. Results: Workplace exposures contribute substantially to the burden of multiple chronic respiratory diseases, including asthma (PAF, 16%); chronic obstructive pulmonary disease (PAF, 14%); chronic bronchitis (PAF, 13%); idiopathic pulmonary fibrosis (PAF, 26%); hypersensitivity pneumonitis (occupational burden, 19%); other granulomatous diseases, including sarcoidosis (occupational burden, 30%); pulmonary alveolar proteinosis (occupational burden, 29%); tuberculosis (occupational burden, 2.3% in silica-exposed workers and 1% in healthcare workers); and community-acquired pneumonia in working-age adults (PAF, 10%). Conclusions: Workplace exposures contribute to the burden of disease across a range of nonmalignant lung conditions in adults (in addition to the 100% burden for the classic occupational pneumoconioses). This burden has important clinical, research, and policy implications. There is a pressing need to improve clinical recognition and public health awareness of the contribution of occupational factors across a range of nonmalignant respiratory diseases.


Assuntos
Doenças Profissionais/epidemiologia , Exposição Ocupacional/estatística & dados numéricos , Transtornos Respiratórios/epidemiologia , Infecções Respiratórias/epidemiologia , Adulto , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade
14.
J Allergy Clin Immunol ; 143(6): 1979-1987, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31176380

RESUMO

Inefficient cooking and heating with solid fuels in poorly ventilated homes are a major source of exposure to indoor air pollution in developing countries. Household air pollution from cooking and heating with solid fuels also is an important contributor to outdoor air pollution. The combustion of organically derived solid fuel is qualitatively similar to the burning of tobacco in terms of emissions of particulate matter and gases, and the mechanisms by which solid fuel smoke causes adverse health effects in human subjects are likely similar. The public health effect of domestic cooking and heating with solid fuels is great. The World Health Organization estimates that there are 3.8 million deaths globally per year attributable to household air pollution. This estimate is based on the strength of the evidence, primarily meta-analyses of epidemiologic studies of acceptable scientific quality, although for cardiovascular disease, the evidence is more inferential. The greatest burden of household air pollution-related premature deaths is in children with pneumonia exposed to biomass smoke. The greatest estimated burden in adults is cardiovascular disease, but chronic obstructive pulmonary disease and lung cancer are important causes of disability and premature death in women, who are the primary cooks and tend not to smoke tobacco in developing countries. Research gaps and opportunities for interventions to reduce effects of solid fuel smoke on public health are identified.


Assuntos
Poluição do Ar em Ambientes Fechados , Culinária , Calefação , Habitação , Fumaça , Doenças Cardiovasculares/epidemiologia , Humanos , Doenças Respiratórias/epidemiologia
15.
Environ Res ; 173: 462-468, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30981117

RESUMO

Wildland firefighters are exposed to wood smoke, which contains hazardous air pollutants, by suppressing thousands of wildfires across the U. S. each year. We estimated the relative risk of lung cancer and cardiovascular disease mortality from existing PM2.5 exposure-response relationships using measured PM4 concentrations from smoke and breathing rates from wildland firefighter field studies across different exposure scenarios. To estimate the relative risk of lung cancer (LC) and cardiovascular disease (CVD) mortality from exposure to PM2.5 from smoke, we used an existing exposure-response (ER) relationship. We estimated the daily dose of wildfire smoke PM2.5 from measured concentrations of PM4, estimated wildland firefighter breathing rates, daily shift duration (hours per day) and frequency of exposure (fire days per year and career duration). Firefighters who worked 49 days per year were exposed to a daily dose of PM4 that ranged from 0.15 mg to 0.74 mg for a 5- and 25-year career, respectively. The daily dose for firefighters working 98 days per year of PM4 ranged from 0.30 mg to 1.49 mg. Across all exposure scenarios (49 and 98 fire days per year) and career durations (5-25 years), we estimated that wildland firefighters were at an increased risk of LC (8 percent to 43 percent) and CVD (16 percent to 30 percent) mortality. This unique approach assessed long term health risks for wildland firefighters and demonstrated that wildland firefighters have an increased risk of lung cancer and cardiovascular disease mortality.


Assuntos
Doenças Cardiovasculares/mortalidade , Bombeiros , Incêndios , Neoplasias Pulmonares/mortalidade , Exposição Ocupacional/estatística & dados numéricos , Humanos , Fumaça
17.
Chest ; 155(2): 417-426, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30419237

RESUMO

Although air pollution is well known to be harmful to the lung and airways, it can also damage most other organ systems of the body. It is estimated that about 500,000 lung cancer deaths and 1.6 million COPD deaths can be attributed to air pollution, but air pollution may also account for 19% of all cardiovascular deaths and 21% of all stroke deaths. Air pollution has been linked to other malignancies, such as bladder cancer and childhood leukemia. Lung development in childhood is stymied with exposure to air pollutants, and poor lung development in children predicts lung impairment in adults. Air pollution is associated with reduced cognitive function and increased risk of dementia. Particulate matter in the air (particulate matter with an aerodynamic diameter < 2.5 µm) is associated with delayed psychomotor development and lower child intelligence. Studies link air pollution with diabetes mellitus prevalence, morbidity, and mortality. Pollution affects the immune system and is associated with allergic rhinitis, allergic sensitization, and autoimmunity. It is also associated with osteoporosis and bone fractures, conjunctivitis, dry eye disease, blepharitis, inflammatory bowel disease, increased intravascular coagulation, and decreased glomerular filtration rate. Atopic and urticarial skin disease, acne, and skin aging are linked to air pollution. Air pollution is controllable and, therefore, many of these adverse health effects can be prevented.


Assuntos
Poluição do Ar/efeitos adversos , Doenças não Transmissíveis/epidemiologia , Doenças Ósseas/epidemiologia , Doenças Cardiovasculares/epidemiologia , Doenças do Sistema Digestório/epidemiologia , Doenças do Sistema Endócrino/epidemiologia , Humanos , Doenças do Sistema Imunitário/epidemiologia , Neoplasias/epidemiologia , Doenças do Sistema Nervoso/epidemiologia , Doenças Respiratórias/epidemiologia , Dermatopatias/epidemiologia
19.
Thorax ; 73(11): 1041-1048, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29899038

RESUMO

BACKGROUND: Secondhand smoke (SHS) exposures have been linked to asthma-related outcomes but quantitative dose-responses using biomarkers of exposure have not been widely reported. OBJECTIVES: Assess dose-response relationships between plasma cotinine-determined SHS exposure and asthma outcomes in minority children, a vulnerable population exposed to higher levels of SHS and under-represented in the literature. METHODS: We performed analyses in 1172 Latino and African-American children with asthma from the mainland USA and Puerto Rico. We used logistic regression to assess relationships of cotinine levels ≥0.05 ng/mL with asthma exacerbations (defined as asthma-related hospitalisations, emergency room visits or oral steroid prescription) in the previous year and asthma control. The shape of dose-response relationships was assessed using a continuous exposure variable in generalised additive logistic models with penalised splines. RESULTS: The OR for experiencing asthma exacerbations in the previous year for cotinine levels ≥0.05 ng/mL, compared with <0.05 ng/mL, was 1.40 (95% CI 1.03 to 1.89), while the OR for poor asthma control was 1.53 (95% CI 1.12 to 2.13). Analyses for dose-response relationships indicated increasing odds of asthma outcomes related with increasing exposure, even at cotinine levels associated with light SHS exposures. CONCLUSIONS: Exposure to SHS was associated with higher odds of asthma exacerbations and having poorly controlled asthma with an increasing dose-response even at low levels of exposure. Our results support the conclusion that there are no safe levels of SHS exposures.


Assuntos
Asma/etnologia , Negro ou Afro-Americano , Hispânico ou Latino , Medição de Risco/métodos , Poluição por Fumaça de Tabaco/efeitos adversos , Adolescente , Asma/etiologia , Criança , Feminino , Humanos , Incidência , Masculino , Fatores de Risco , Estados Unidos/epidemiologia , Adulto Jovem
20.
Occup Environ Med ; 75(10): 730-735, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29743185

RESUMO

OBJECTIVES: Synthetic metalworking fluids (MWFs), widely used to cool and lubricate industrial machining and grinding operations, have been linked with increased risk of several cancers. Estimates of their relation with lung cancer, however, are inconsistent. Controlling for the healthy worker survivor effect, we examined the relations between lung cancer mortality and exposure to synthetic MWF, as well as to biocides added to water-based fluids to control microbial growth, in a cohort of autoworkers. Biocides served as a marker for endotoxin, which has reported antitumour effects, and were hypothesised to be the reason prior studies found reduced lung cancer risk associated with exposure to synthetic fluids. METHODS: Using the parametric g-formula, we estimated risk ratios (RRs) comparing cumulative lung cancer mortality under no intervention with what would have occurred under hypothetical interventions reducing exposure to zero (ie, a ban) separately for two exposures: synthetic fluids and biocides. We also specified an intervention on synthetic MWF and biocides simultaneously to estimate joint effects. RESULTS: Under a synthetic MWF ban, we observed decreased lung cancer mortality risk at age 86, RR=0.96 (0.91-1.01), but when we also intervened to ban biocides, the RR increased to 1.03 (0.95-1.11). A biocide-only ban increased lung cancer mortality (RR=1.07 (1.00-1.16)), with slightly larger RR in younger ages. CONCLUSIONS: Findings suggest a modest positive association for synthetic MWF with lung cancer mortality, contrary to the negative associations reported in earlier studies. Biocide exposure, however, was inversely associated with risk of lung cancer mortality.


Assuntos
Desinfetantes/toxicidade , Lubrificantes/toxicidade , Neoplasias Pulmonares/mortalidade , Metalurgia , Doenças Profissionais/mortalidade , Exposição Ocupacional/efeitos adversos , Adulto , Feminino , Efeito do Trabalhador Sadio , Humanos , Masculino , Michigan/epidemiologia , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA