Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37834467

RESUMO

Autophagy is a catabolic process that is essential to the maintenance of homeostasis through the cellular recycling of damaged organelles or misfolded proteins, which sustains energy balance. Additionally, autophagy plays a dual role in modulating the development and progression of cancer and inducing a survival strategy in tumoral cells. Programmed cell death-ligand 1 (PD-L1) modulates the immune response and is responsible for maintaining self-tolerance. Because tumor cells exploit the PD-L1-PD-1 interaction to subvert the immune response, immunotherapy has been developed based on the use of PD-L1-blocking antibodies. Recent evidence has suggested a bidirectional regulation between autophagy and PD-L1 molecule expression in tumor cells. Moreover, the research into the intrinsic properties of PD-L1 has highlighted new functions that are advantageous to tumor cells. The relationship between autophagy and PD-L1 is complex and still not fully understood; its effects can be context-dependent and might differ between tumoral cells. This review refines our understanding of the non-immune intrinsic functions of PD-L1 and its potential influence on autophagy, how these could allow the survival of tumor cells, and what this means for the efficacy of anti-PD-L1 therapeutic strategies.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Antígeno B7-H1/metabolismo , Ligantes , Imunoterapia , Autofagia , Apoptose
2.
Eur J Immunol ; 51(11): 2641-2650, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34398472

RESUMO

Helicobacter pylori is a Gram-negative bacterium found on the luminal surface of the gastric mucosa in at least 50% of the world's human population. The protective effect of breastfeeding against H. pylori infection has been extensively reported; however, the mechanisms behind this protection remain poorly understood. Human IgA from colostrum has reactivity against H. pylori antigens. Despite that IgA1 and IgA2 display structural and functional differences, their reactivity against H. pylori had not been previously determined. We attested titers and reactivity of human colostrum-IgA subclasses by ELISA, immunoblot, and flow cytometry. Colostrum samples from healthy mothers had higher titers of IgA; and IgA1 mostly recognized H. pylori antigens. Moreover, we found a correlation between IgA1 reactivity and their neutralizing effect determined by inhibition of cytoskeletal changes in AGS cells infected with H. pylori. In conclusion, colostrum-IgA reduces H. pylori infection of epithelial gastric cells, suggesting an important role in preventing the bacteria establishment during the first months of life. As a whole, these results suggest that IgA1 from human colostrum provides protection that may help in the development of the mucosal immune system of newborn children.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Colostro/imunologia , Helicobacter pylori/imunologia , Imunoglobulina A Secretora/imunologia , Citoesqueleto , Células Epiteliais , Feminino , Mucosa Gástrica/imunologia , Infecções por Helicobacter/imunologia , Humanos , Gravidez
3.
Molecules ; 24(19)2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547522

RESUMO

Ursolic and oleanolic acids are natural isomeric triterpenes known for their anticancer activity. Here, we investigated the effect of triterpenes on the viability of A549 human lung cancer cells and the role of autophagy in their activity. The induction of autophagy, the mitochondrial changes and signaling pathway stimulated by triterpenes were systematically explored by confocal microscopy and western blotting. Ursolic and oleanolic acids induce autophagy in A549 cells. Ursolic acid activates AKT/mTOR pathways and oleanolic acid triggers a pathway independent on AKT. Both acids promote many mitochondrial changes, suggesting that mitochondria are targets of autophagy in a process known as mitophagy. The PINK1/Parkin axis is a pathway usually associated with mitophagy, however, the mitophagy induced by ursolic or oleanolic acid is just dependent on PINK1. Moreover, both acids induce an ROS production. The blockage of autophagy with wortmannin is responsible for a decrease of mitochondrial membrane potential (Δψ) and cell death. The wortmannin treatment causes an over-increase of p62 and Nrf2 proteins promote a detoxifying effect to rescue cells from the death conducted by ROS. In conclusion, the mitophagy and p62 protein play an important function as a survival mechanism in A549 cells and could be target to therapeutic control.


Assuntos
Mitofagia/efeitos dos fármacos , Ácido Oleanólico/farmacologia , Triterpenos/farmacologia , Células A549 , Humanos , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ácido Ursólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA