Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Nanobiotechnology ; 22(1): 574, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294665

RESUMO

BACKGROUND: Breast cancer (BC) is a significant health challenge, ranking as the second leading cause of cancer-related death and the primary cause of mortality among women aged 45 to 55. Early detection is crucial for optimal prognosis. Among various treatment options available for cancer, chemotherapy remains the predominant approach. However, its patient-friendliness is hindered by cytotoxicity, adverse effects, multi-drug resistance, potential for recurrence, and high costs. This review explores extensively studied phytomolecules, elucidating their molecular mechanisms. It also emphasizes the importance of combination therapy, highlighting recent advancements in the exploration of diverse drug delivery systems and novel routes of administration. The regulatory considerations are crucial in translating these approaches into clinical practices. RESULTS: Consequently, there is growing interest in exploring the relationship between diet, cancer, and complementary and alternative medicine (CAM) in cancer chemotherapy. Phytochemicals like berberine, curcumin, quercetin, lycopene, sulforaphane, resveratrol, epigallocatechin gallate, apigenin, genistein, thymoquinone have emerged as promising candidates due to their pleiotropic actions on target cells through multiple mechanisms with minimal toxicity effects. This review focuses on extensively studied phytomolecules, elucidating their molecular mechanisms. It also emphasizes the importance of combination therapy, highlighting recent advancements in the exploration of diverse drug delivery systems and novel routes of administration. The regulatory considerations are crucial in translating these approaches into clinical practices. CONCLUSION: The present review provides a comprehensive understanding of the molecular mechanisms, coupled with well-designed clinical trials and adherence to regulatory guidelines, which pave the way for nutrition-based combination therapies to become a frontline approach in early-stage BC treatment.


Assuntos
Neoplasias da Mama , Sistemas de Liberação de Medicamentos , Compostos Fitoquímicos , Humanos , Neoplasias da Mama/tratamento farmacológico , Feminino , Sistemas de Liberação de Medicamentos/métodos , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/farmacologia , Animais , Terapia Combinada , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Terapias Complementares/métodos
2.
Nucleic Acids Res ; 52(17): 10040-10067, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39189452

RESUMO

Nucleic acid-based diagnostics is a promising venue for detection of pathogens causing infectious diseases and mutations related to cancer. However, this type of diagnostics still faces certain challenges, and there is a need for more robust, simple and cost-effective methods. Clustered regularly interspaced short palindromic repeats (CRISPRs), the adaptive immune systems present in the prokaryotes, has recently been developed for specific detection of nucleic acids. In this review, structural and functional differences of CRISPR-Cas proteins Cas9, Cas12 and Cas13 are outlined. Thereafter, recent reports about applications of these Cas proteins for detection of viral genomes and cancer biomarkers are discussed. Further, we highlight the challenges associated with using these technologies to replace the current diagnostic approaches and outline the points that need to be considered for designing an ideal Cas-based detection system for nucleic acids.


Assuntos
Biomarcadores Tumorais , Sistemas CRISPR-Cas , Neoplasias , Humanos , Biomarcadores Tumorais/genética , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/diagnóstico , Genoma Viral , Proteínas Associadas a CRISPR/metabolismo
3.
ACS Omega ; 9(24): 25932-25944, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38911731

RESUMO

Ferroptosis and apoptosis are programmed cell death pathways with distinct characteristics. Sometimes, cancer cells are aided by the induction of a different pathway, such as ferroptosis, when they develop chemoresistance and avoid apoptosis. Identifying the nanomedicine that targets dual pathways is considered as one of the best strategies for diverse cancer types. In our previous work, we synthesized gold nanoparticles (GNP) utilizing Gluconacetobacter liquefaciens in conjunction with compound K (CK) and coprisin (CopA3), yielding GNP-CK-CopA3. Here, we assessed the inhibitory effect of GNP-CK-CopA3 on AGS cells and the induction of apoptosis using Hoechst and PI, Annexin V-FITC/PI, and qRT-PCR. Subsequently, we conducted downstream proteomic analysis and molecular dynamic stimulation to identify the underlying molecular mechanisms. Our investigation of cultured AGS cells treated with varying concentrations of GNP-CK-CopA3 demonstrated the anticancer properties of these nanoparticles. Penetration of GNP-CK-CopA3 into AGS cells was visualized using an enhanced dark field microscope. Apoptosis induction was initially confirmed by treating AGS cells with GNP-CK-CopA3, as evidenced by staining with dyes such as Hoechst and PI. Additionally, mitochondrial disruption and cellular localization induced by GNP-CK-CopA3 were validated through Mito-tracker staining and transmission electron microscopy images. Annexin V-FITC/PI staining was used to distinguish early and late-stage apoptosis or necrosis based on fluorescence patterns. The gene expression of apoptotic markers indicated the initiation of cellular apoptosis. Further, proteomic analysis suggested that the treatment of GNP-CK-CopA3 to AGS cells led to the suppression of 439 proteins and the stimulation of 832 proteins. Among these, ferroptosis emerged as a significant interconnected pathway where glutathione peroxidase 4 (GPX4) and glutathione synthetase (GSS) were significant interacting proteins. Molecular docking and dynamic simulation studies confirmed the binding affinity and stability between CopA3 and CK with GSS and GPX4 proteins, suggesting the role of GNP-CK-CopA3 in ferroptosis induction. Overall, our study showed GNP-CK-CopA3 could play a dual role by inducing apoptosis and ferroptosis to induce AGS cell death.

4.
ACS Pharmacol Transl Sci ; 7(6): 1884-1900, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38898949

RESUMO

The PI3K/AKT/FOXO3 pathway is one of the most frequently involved signaling pathways in cancer, including breast cancer. Therefore, we synthesized a novel lysine-rich polypeptide (Lys-PP) using de novo assembly method and evaluated its anticancer effect. We characterized the structural and physicochemical properties of Lys-PP using various techniques. Later, we used integrated approaches such as in silico, in vitro, and in vivo analysis to confirm the anticancer and therapeutic effect of Lys-PP. First, RNA sequencing suggests Lys-PP disrupted the central carbon metabolic pathway through the modulation of prolactin signaling. Additionally, docking analysis also confirmed the significant association of PI3K/AKT and FOXO3 pathway to induce an apoptotic effect on cancer. Second, Lys-PP exhibited a significant cytotoxicity effect against MDA-MB-231 but no cytotoxic effects on RAW 264.7 and HEK-293, respectively. The cytotoxic effect of Lys-PP-induced apoptosis by an increase in FOXO3a protein expression and a decrease in PI3K/AKT pathway was confirmed by quantitative real-time polymerase chain reaction, immunoblotting, and fluorescent microscopy. Later, immunohistochemistry and hematoxylin and eosin staining on MDA-MD-231 showed increased FOXO3a expression and cell death in the xenograft mice model. Further, liver function, metabolic health, or lipid profile upon Lys-PP showed the absence of significant modulation in the biomarkers except for kidney-related biomarkers. Overall, our comprehensive study provides the first evidence of Lys-PP antibreast cancer action, which could serve as a potential treatment in an alternative or complementary medicine practice.

5.
J Nanobiotechnology ; 22(1): 71, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373982

RESUMO

Moringa oleifera is one of the popular functional foods that has been tremendously exploited for synthesis of a vast majority of metal nanoparticles (NPs). The diverse secondary metabolites present in this plant turn it into a green tool for synthesis of different NPs with various biological activities. In this review, we discussed different types of NPs including silver, gold, titanium oxide, iron oxide, and zinc oxide NPs produced from the extract of different parts of M. oleifera. Different parts of M. oleifera take a role as the reducing, stabilizing, capping agent, and depending on the source of extract, the color of solution changes within NP synthesis. We highlighted the role of polyphenols in the synthesis of NPs among major constituents of M. oleifera extract. The different synthesis methods that could lead to the formation of various sizes and shapes of NPs and play crucial role in biomedical application were critically discussed. We further debated the mechanism of interaction of NPs with various sizes and shapes with the cells, and further their clearance from the body. The application of NPs made from M. oleifera extract as anticancer, antimicrobial, wound healing, and water treatment agent were also discussed. Small NPs show better antimicrobial activity, while they can be easily cleared from the body through the kidney. In contrast, large NPs are taken by the mono nuclear phagocyte system (MPS) cells. In case of shape, the NPs with spherical shape penetrate into the bacteria, and show stronger antibacterial activity compared to the NPs with other shapes. Finally, this review aims to correlate the key characteristics of NPs made from M. oleifera extract, such as size and shape, to their interactions with the cells for designing and engineering them for bio-applications and especially for therapeutic purposes.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Moringa oleifera , Moringa oleifera/metabolismo , Polifenóis/farmacologia , Anti-Infecciosos/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo
6.
J Biomol Struct Dyn ; 41(21): 12106-12119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36617953

RESUMO

As triple negative breast cancer (TNBC) lacks a specific target, exploration of abnormally expressed genes during the progression of TNBC is important for a better understanding of tumorigenesis and to find a specific target. We intended to figure out genes associated with TNBC, which can provide unique insights into gene dysregulation in TNBC while also pointing to new possible therapeutic targets for TNBC. A meta-analysis of multiple TNBC mRNA profiles was performed to identify consistently differentially expressed genes (CDGs). The pathways involved in modulating these genes were analyzed by MsigDB, and the interaction map was constructed. These CDGs were evaluated for their expression in cell lines, and drugs that could modulate the expression of CDGs were obtained using the connectivity map. CDGs were docked with doxorubicin and anethole, which is a phytocompound. The expression of selected CDGs was analyzed in MDA-MB-231 cells after treatment with doxorubicin and anethole. We found 45 CDGs, out of which 36 were upregulated and 9 were downregulated. MDA-MB-231 cell line was found to have high expression of CDGs, and drug that could modulate the expression of CDGs was doxorubicin. Docking results revealed that anethole and doxorubicin had good interaction with the CDGs especially with the genes AURKA, CDC6, DEPDC1, KIF23, KPNA2, MELK, CTNNB1, FLI1 and E2F1. Gene expression studies of the selected CDGs showed that the synergistic effect of anethole and doxorubicin effectively downregulated the expression. The CDGs identified from multiple cohorts have clinical significance and may be effectively exploited in the targeted therapy for TNBC.Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Transcriptoma/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Neoplasias , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/uso terapêutico
7.
Pest Manag Sci ; 79(3): 1131-1139, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36358028

RESUMO

BACKGROUND: Bradysia procera, a ginseng stem fungus gnat, is one of the most serious insect pests of Korean ginseng (Panax ginseng), causing significant damage to plant growth. The goal of this study was to determine the toxicity and mechanism of action of phenylpropanoids (trans-anethole and estragole) isolated from the methanol extract and hydrodistillate of Illicium verum fruit against third-instar larvae and eggs of Bradysia procera. RESULTS: The filter-paper mortality bioassay revealed that estragole [median lethal concentration (LC50 ) = 4.68 g/cm2 ] has a significant fumigant effect, followed by trans-anethole (LC50 = 43.92 g/cm2 ). However, estragole had the lowest toxic effect when compared to commercially available insecticides. After 7 days, estragole and trans-anethole at 75 g/cm2 inhibited egg hatchability up to 97% and 93%, respectively. At 0.09 g/cm2 , insecticides had an inhibitory effect on egg-hatching ability ranging from 88% to 94%. Furthermore, in both closed and open containers, these active constituents were able to consistently induce vapor-phased toxicity. Both estragole and trans-anethole have the ability to inhibit acetylcholinesterase (AChE), which is involved in neurotransmitter function. However, the active constituent estragole from I. verum fruit acted as a potent AChE inhibitor and had a slightly lower effect on cyclic adenosine monophosphate (AMP) than octopamine alone. CONCLUSION: This finding suggests that estragole may influence Bradysia procera neurotransmitter function via both the AChE and octopaminergic receptors. More research is needed to demonstrate the potential applications of I. verum fruit-derived products as potential larvicides and ovicides for Bradysia procera population control. © 2022 Society of Chemical Industry.


Assuntos
Illicium , Inseticidas , Animais , Inseticidas/química , Illicium/química , Frutas/química , Acetilcolinesterase , Extratos Vegetais/farmacologia , Nematóceros
8.
Polymers (Basel) ; 14(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36501695

RESUMO

Biosynthesized metal nanoparticles, especially silver and gold nanoparticles, and their conjugates with biopolymers have immense potential in various fields of science due to their enormous applications, including biomedical applications. Polymeric nanoparticles are particles of small sizes from 1 nm to 1000 nm. Among different polymeric nanoparticles, chitosan-coated silver and gold nanoparticles have gained significant interest from researchers due to their various biomedical applications, such as anti-cancer, antibacterial, antiviral, antifungal, anti-inflammatory technologies, as well as targeted drug delivery, etc. Multidrug-resistant pathogenic bacteria have become a serious threat to public health day by day. Novel, effective, and safe antibacterial agents are required to control these multidrug-resistant pathogenic microorganisms. Chitosan-coated silver and gold nanoparticles could be effective and safe agents for controlling these pathogens. It is proven that both chitosan and silver or gold nanoparticles have strong antibacterial activity. By the conjugation of biopolymer chitosan with silver or gold nanoparticles, the stability and antibacterial efficacy against multidrug-resistant pathogenic bacteria will be increased significantly, as well as their toxicity in humans being decreased. In recent years, chitosan-coated silver and gold nanoparticles have been increasingly investigated due to their potential applications in nanomedicine. This review discusses the biologically facile, rapid, and ecofriendly synthesis of chitosan-coated silver and gold nanoparticles; their characterization; and potential antibacterial applications against multidrug-resistant pathogenic bacteria.

9.
Bioinorg Chem Appl ; 2022: 4513208, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903518

RESUMO

Several industries have become major contributors to waterbody contamination due to the improper removal of dyes and effluents into water bodies. Due to their carcinogenic properties and low biodegradability, dye degradation is a considerable danger to people, animals, and the oceanic environment. As part of this study, Andrographis paniculata leaf extract was used as a reducing and stabilizing agent to synthesize zinc nanoparticles and degrade dyes such as methyl red and eosin. Zinc oxide nanoparticles (ZnONPs) showed a surface plasmon resonance peak at 430 nm in the UV spectrum. The FTIR result showed a band at 597.93 cm-1 that confirmed the formation of zinc nanoparticles. AFM results revealed spherical ZnONPs. The SEM results predicted an average particle size of 60 nm for crystalline particles. Biologically synthesized zinc nanoparticles exhibited greater antibacterial activity against Pseudomonas spp. and Proteus spp. but lesser activity against Klebsiella spp. and S. aureus. At 1000 µg/ml concentration, ZnONPs had the highest antioxidant activity of 45.34%. An ultraviolet-visible spectrophotometer measured dye degradation progress between 300 and 800 nm. For methyl red, the maximum absorption peak was measured at 415 nm, and for eosin, the maximum peak value was measured between 500 and 515 nm.

10.
Bioinorg Chem Appl ; 2022: 9569226, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35662912

RESUMO

Origanum vulgare essential oil (EO) is traditionally well-known for its aromatic properties and biomedical applications, including anticancer. This was the first report where oregano essential oil-based nano emulsion (OENE) was synthesized for studying its effects on prostate cancer cell lines (PC3). At first, we have synthesized OENE and characterized using various spectroscopic analyses. The toxicity and inhibitory concentration (IC50) of OENE toward prostate cancer by MTT analysis were performed. The lipid biogenesis mediated, molecular target pathway analyses were performed using fluorescence cellular staining techniques, real-time RT-PCR, or western blotting analysis. OENE showed IC50 at 13.82 µg/mL and significantly induced distinct morphological changes, including cell shrinkage, cell density, and cell shape reduction. In addition, OENE could also significantly decreased lipid droplet accumulation which was confirmed by studying mRNA transcripts of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) (0.31-fold), fatty acid synthase (FASN) (0.18-fold), and sterol regulatory element-binding protein (SREPB1) (0.11-fold), respectively. Furthermore, there is a significant upregulation BAX (BCL2 associated X) and caspase 3 expressions. Nevertheless, OENE decreased the transcript level of BCL2 (B-cell lymphoma 2), thus resulting in apoptosis. Overall, our present work demonstrated that OENE could be a therapeutic target for the treatment of prostate cancer and warrants in vivo studies.

11.
Phytomedicine ; 99: 154014, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35247670

RESUMO

BACKGROUND: Silymarin, a blend of flavonolignans isolated from plant Silybum marianum L., has long been used as an herbal medicine. Biogenic routes especially the plant-based synthesis of selenium nanoparticles (SeNPs) is safe, eco-friendly, nontoxic and being considered as one of the best strategies for treatment of cancer. PURPOSE: Silymarin-mediated green synthesis of SeNPs and their possibility as an anticancer agent have not been reported to date. Therefore, our present study was aimed to synthesize and characterize the selenium mediated silymarin nanoparticles (Si-SeNPs) from silymarin and investigate their possibility as an anticancer agent. METHODS: The physicochemical characteristics of Si-SeNPs were analyzed using various analytical techniques, such as HPLC, field emission-transmission electron microscope, energy-dispersive X-ray spectrometer, and thermogravimetric analysis. The underlying molecular mechanism were evaluated using AGS gastric cancer cells. RESULTS: Compared with silymarin, the Si-SeNPs exhibited significantly increased cytotoxic effect of AGS cells without exhibiting toxicity on normal cells. Real time PCR and western blotting analysis indicated that Si-SeNPs induced expression of Bax/Bcl-2, cytochrome c, and cleavage of caspase proteins, which is associated with mitochondria-mediated apoptosis signaling in AGS cells. Moreover, agonist assay using PI3K activator indicated that Si-SeNPs-inhibited PI3K/AKT/mTOR pathways were significantly associated as an autophagy and apoptosis signaling in AGS cells. CONCLUSION: Our study demonstrated the improved anticancer efficacy of Si-SeNPs- induced apoptosis and autophagy pathways, and therefore recommended Si-SeNPs as a novel anticancer agent after in vivo studies.

12.
Environ Toxicol ; 37(3): 446-456, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34800081

RESUMO

Acacia catechu Willd (Fabaceae) is a thorny tree widely distributed in India and commonly used as traditional Ayurvedic medicine for various ailments. The current study evaluates the cytotoxic potentials of A. catechu ethanolic seed extract (ACSE) in HepG2 cells, a human hepatocellular carcinoma cell line. The HepG2 cells were treated with 0.1, 0.3, 1, 3, 10, 30, 100, 300 and 1000 µg/ml of ACSE and the cytotoxic effect was evaluated by MTT and lactate dehydrogenase (LDH) leakage assays. The IC50 of ACSE was found at 77.04 µg/ml and therefore, further studies were carried out with the concentrations of 35 and 70 µg/ml. The intracellular reactive oxygen species (ROS) generation and apoptosis-related morphological changes were evaluated. Gene expressions of Bax, Bcl-2, cytochrome C (Cyt-c), caspases-9 and 3 were analyzed by qPCR. The ACSE treatments caused LDH leakage was associated with an increased ROS generation. The increased ROS generation was associated with the downregulation of intracellular antioxidant enzyme superoxide dismutase and reduced glutathione content. AO/EB and PI staining also confirmed chromatin condensation and apoptosis. The flow cytometric analysis showed an accumulation of HepG2 cells at sub G0/G1 (apoptotic) phase upon ACSE treatments. The ACSE induced cytotoxicity and oxidative stress were related to increased apoptotic marker gene expressions such as Bax, Cyt-c, caspase-9 and 3, and decreased anti-apoptotic marker Bcl-2. The current finding suggests that ACSE has apoptosis-inducing potential via the mitochondrial pathway in HepG2 cells.


Assuntos
Acacia , Neoplasias Hepáticas , Apoptose , Células Hep G2 , Humanos , Potencial da Membrana Mitocondrial , Extratos Vegetais/toxicidade , Espécies Reativas de Oxigênio
13.
Oxid Med Cell Longev ; 2021: 8511576, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707782

RESUMO

The present research displays the green synthesis of stable silver nanoparticles (AgNPs). The aqueous solution of Fucoidan from Fucus vesiculosus source (brown marine algae) is used as a reducing and capping agent. UV-Vis spectroscopy, XRD, FT-IR, SEM, EDX, and TEM with selected area electron diffraction are used to characterize the synthesized silver nanoparticles (AgNPs). The synthesized AgNPs exhibit a surface plasmon resonance at 430 nm after 24 h. The characterization results showed that AgNPs are crystalline in nature and exhibit mostly spherical shapes with an average diameter of 4-45 nm. Silver nanoparticles showed effective antibacterial activity against representative pathogens of bacteria. The activities of commercial antibiotics were enhanced by impregnation with the synthesized AgNPs. It also shows good fungicidal and anticancer activity against liver and lung cell lines and shows significant antioxidant efficacy (84%) at 10 µg/ml AgNP concentration against DPPH. The utilization of environmentally synthesized AgNPs offers numerous benefits of ecofriendliness and compatibility for biomedical applications.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Nanopartículas Metálicas , Polissacarídeos/farmacologia , Nitrato de Prata/farmacologia , Células A549 , Antibacterianos/química , Antineoplásicos/química , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Compostos de Bifenilo/química , Sobrevivência Celular/efeitos dos fármacos , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Composição de Medicamentos , Sequestradores de Radicais Livres/química , Química Verde , Células Hep G2 , Humanos , Nanotecnologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Picratos/química , Polissacarídeos/química , Nitrato de Prata/química
14.
J Biochem Mol Toxicol ; 35(12): e22928, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34585488

RESUMO

The heterogeneity and poor prognosis of triple-negative breast cancer (TNBC) have limited the treatment options and made clinical management challenging. This has nurtured a major effort to discover druggable molecular targets. Currently, chemotherapy is the primary treatment strategy for this disease. Doxorubicin is the most frequently used chemotherapeutic drug for TNBC and due to the fact that chemotherapeutic drugs have a lot of side effects, we evaluated the synergistic effect of the phytocompound anethole and doxorubicin. The cytotoxic effect of anethole in combination with doxorubicin on MDA-MB-231 cells was evaluated by various parameters, including apoptosis, cell cycle analysis, DNA damage, and cell proliferation. Furthermore, mitochondrial membranepotential (MMP), endoplasmic reticulum (ER) stress, and reactive oxygen species (ROS) levels were also evaluated in the cells treated with/without anethole and doxorubicin. Expression of the apoptotic proteins was evaluated by Western blot analysis. Initial evaluation of cytotoxicity of anethole on MDA-MB-231 cells demonstrated preferential suppression of cell proliferation and when treated along with doxorubicin it showed enhanced cytotoxicity with a synergistic effect. Cell cycle analysis revealed arrest at different stages of the cell cycle, such as sub G0-G1, G0-G1, S, and G2M in various treatment groups and apoptotic cell death was subsequently evident with propidium iodide (PI) staining. The synergistic action of anethole and doxorubicin effectively induced mitochondrial membrane potential loss, which, in turn, led to a burst of ROS production, which eventually produced unfolded protein response by damaging the ER. Synergistic anticancer effect was observed on exposure of MDA-MB-231 cells to anethole and doxorubicin in inducing cell death.


Assuntos
Derivados de Alilbenzenos/farmacologia , Anisóis/farmacologia , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Feminino , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo
15.
Mater Sci Eng C Mater Biol Appl ; 127: 112214, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34225866

RESUMO

In recent times, the development of functionalized nanoparticle methodology for biomedical applications has become a major challenge. In the present study, we prepared a novel gold nanoparticle (AuNP), named Curto-Cumin AuNP (CC-AuNP), using the biosynthetic process involving Nigella sativa (black cumin) seed extract and membrane vesicles isolated from the novel probiotic strain, Curtobacterium proimmune K3. Various spectrometric and microscopic analyses were performed to characterize the physicochemical properties of the nanoparticles. CC-AuNP exhibited significant cytotoxicity against human gastric adenocarcinoma (AGS) cells but not against normal cells. The toxic effects of the nanoparticles were associated with the excessive production of reactive oxygen species (ROS) in damaged mitochondria. Further, we investigated the molecular mechanisms underlying the cytotoxic effect of CC-AuNP. Results showed that except for B cell lymphoma 2 (Bcl-2), the intracellular apoptotic signaling molecules, such as p53, Bcl-associated X protein (Bax), and Caspase 9/Caspase 3 were significantly upregulated in AGS cells. ROS production and alterations in mitochondrial membrane potential were observed in AGS cells treated with CC-AuNP. The activation of autophagy flux-related biomarkers, such as LC3b/a, Beclin-1, p62, and Caspase 8, was confirmed by qPCR and western blotting. Autophagy pathway was suppressed in CC-AuNP-treated AGS cells and could not proceed further to the mature state. This was confirmed by the evaluation of both apoptosis and autophagy signaling pathways using autophagy-induced AGS cells treated with rapamycin, a well-studied autophagy activator. Overall, our results showed that CC-AuNP upregulates apoptotic signaling and suppresses the autophagy-related signaling pathway, and thus has potential as an anticancer agent. To our knowledge, the present study is the first to demonstrate that CC-AuNP may serve as novel therapeutic agent against gastric cancer. Furthermore, our study provides preliminary data which can be used to develop novel anticancer candidates and understand their anticancer mechanisms, and seems to be a good starting point for the development of alternative medications based on CC-AuNP.


Assuntos
Nanopartículas Metálicas , Nigella sativa , Apoptose , Autofagia , Linhagem Celular Tumoral , Ouro , Humanos , Espécies Reativas de Oxigênio
16.
Nanomaterials (Basel) ; 11(5)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064899

RESUMO

(1) Background: Nanotechnology is being widely applied for anticancer strategies with few side effects. Nanoparticles (NPs) prepared from natural extracts are promising candidates for cancer treatment because of their unique physicochemical characteristics. This study aimed to prepare gold nanoparticles (AuNPs) from Phyllanthus emblica fruit extract (PEFE) using Bifidobacterium animalis subsp. lactis (B. lactis) and to evaluate their anticancer activity against the human gastric adenocarcinoma cell-line (AGS). (2) Methods: The safety of microbial biosynthesis AuNPs (PEFE-AuNPs) was assessed by evaluating the cytotoxicity. The anticancer activity of PEFE-AuNPs was investigated in AGS cells in terms of apoptosis and autophagy. (3) Results: PEFE-AuNPs exhibited significant cytotoxicity against AGS cells but not against normal cells. The apoptosis induced by PEFE-AuNPs in AGS cells was associated with PTEN-induced kinase 1 (PINK1)-Parkin mediated reduction of mitochondrial membrane potential and activation of intracellular signaling apoptosis pathways. The anticancer activity of PEFE-AuNPs was associated with induction of apoptosis through inhibition of autophagy, downregulation of LC3-II/LC3-I and Beclin-1 expression, and upregulation of p62 expression in AGS cells. (4) Conclusions: This study is the first to demonstrate the anticancer activity of PEFE-AuNPs against AGS cells. Our results provide a good starting point for the development of new anticancer products based on gold nanoparticles of P. emblica fruit extract.

17.
Biomed Res Int ; 2021: 3091587, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34977237

RESUMO

BACKGROUND: Because of its diverse range of use in several ethics of diagnosis and care of multiple diseases, nanotechnology has seen remarkable growth and has become a key component of medical sciences. In recent years, there has been rapid advancement in medicine and biomaterials. Nanomedicine aids in illness prevention, diagnosis, monitoring, and treatment. AIM: The purpose of this work is to evaluate the antibacterial, anti-inflammatory, and cytotoxic capabilities of green produced silver nanoparticle with the addition of curcumin-assisted chitosan nanocomposite (SCCN) against wound pathogenic as reducing agents. MATERIALS AND METHODS: The plant extract of Pongamia pinnata, silver nanoparticles, and its based curcumin nanoformulations was studied in this study utilizing UV visible spectrophotometer, selected area electron diffraction (SAED), and TEM. Anti-inflammatory, antimicrobial, and cytotoxic tests were performed on silver nanoparticles with the addition of curcumin-assisted chitosan nanocomposite (SCCN). Furthermore, these produced nanocomposites were coated on clinical silk and tested for antibacterial activity. RESULTS: The produced silver nanoparticle with the addition of curcumin-assisted chitosan nanocomposite (SCCN) has significant antibacterial activities against Pseudomonas aeruginosa and staphylococcus aureus. They are as well as possess anti-inflammatory activity and furthermore prove to be biocompatible. CONCLUSION: This advancement in the field of biomaterials, which means nanocomposite, not only helps to reduce the harmful effects of pathogenic organisms while representing an environmentally benign material but it also shows to be a material with zero danger to humans and the environment.


Assuntos
Anti-Inflamatórios/farmacologia , Quitosana/química , Curcumina/farmacologia , Nanopartículas Metálicas/química , Millettia/química , Nanocompostos/química , Prata/química , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Inflamatórios/química , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Humanos , Nanotecnologia/métodos , Tamanho da Partícula , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Infecções Estafilocócicas/dietoterapia , Staphylococcus aureus/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
18.
Biomed Res Int ; 2020: 6040727, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32258129

RESUMO

The isomers of citral (cis-citral and trans-citral) were isolated from the Cymbopogon citratus (DC.) Stapf oil demonstrates many therapeutic properties including anticancer properties. However, the effects of citral on suppressing human prostate cancer and its underlying molecular mechanism have yet to be elucidated. The citral was isolated from lemongrass oil using various spectroscopic analyses, such as electron ionized mass spectrometry (EI-MS) and nuclear magnetic resonance (NMR) spectroscopy respectively. We carried out 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay to evaluate the cell viability of citral in prostate cancer cells (PC-3 and PC3M). Furthermore, to confirm that PC3 undergoes apoptosis by inhibiting lipogenesis, we used several detection methods including flow cytometry, DNA fragmentation, Hoechst staining, PI staining, oil staining, qPCR, and Western blotting. Citral impaired the clonogenic property of the cancer cells and altered the morphology of cancer cells. Molecular interaction studies and the PASS biological program predicted that citral isomers tend to interact with proteins involved in lipogenesis and the apoptosis pathway. Furthermore, citral suppressed lipogenesis of prostate cancer cells through the activation of AMPK phosphorylation and downregulation of fatty acid synthase (FASN), acetyl coA carboxylase (ACC), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), and sterol regulatory element-binding protein (SREBP1) and apoptosis of PC3 cells by upregulating BAX and downregulating Bcl-2 expression. In addition, in silico studies such as ADMET predicted that citral can be used as a safe potent drug for the treatment of prostate cancer. Our results indicate that citral may serve as a potential candidate against human prostate cancer and warrants in vivo studies.


Assuntos
Monoterpenos Acíclicos/farmacologia , Apoptose/efeitos dos fármacos , Simulação por Computador , Ácidos Graxos/biossíntese , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/biossíntese , Neoplasias da Próstata/metabolismo , Humanos , Lipogênese/efeitos dos fármacos , Masculino , Células PC-3 , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia
19.
Int J Mol Sci ; 21(6)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188055

RESUMO

Plant growth-promoting rhizobacteria play vital roles not only in plant growth, but also in reducing biotic/abiotic stress. Sphingomonas panacis DCY99T is isolated from soil and root of Panax ginseng with rusty root disease, characterized by raised reddish-brown root and this is seriously affects ginseng cultivation. To investigate the relationship between 159 sequenced Sphingomonas strains, pan-genome analysis was carried out, which suggested genomic diversity of the Sphingomonas genus. Comparative analysis of S. panacis DCY99T with Sphingomonas sp. LK11 revealed plant growth-promoting potential of S. panacis DCY99T through indole acetic acid production, phosphate solubilizing, and antifungal abilities. Detailed genomic analysis has shown that S. panacis DCY99T contain various heavy metals resistance genes in its genome and the plasmid. Functional analysis with Sphingomonas paucimobilis EPA505 predicted that S. panacis DCY99T possess genes for degradation of polyaromatic hydrocarbon and phenolic compounds in rusty-ginseng root. Interestingly, when primed ginseng with S. panacis DCY99T during high concentration of iron exposure, iron stress of ginseng was suppressed. In order to detect S. panacis DCY99T in soil, biomarker was designed using spt gene. This study brings new insights into the role of S. panacis DCY99T as a microbial inoculant to protect ginseng plants against rusty root disease.


Assuntos
Tolerância a Medicamentos/genética , Genoma Bacteriano , Ferro/metabolismo , Panax/microbiologia , Sphingomonas/genética , Sphingomonas/fisiologia , DNA Bacteriano , Genes Bacterianos/genética , Tamanho do Genoma , Hidroxibenzoatos , Ferro/toxicidade , Metais Pesados , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , Microbiologia do Solo , Sphingomonas/efeitos dos fármacos , Sphingomonas/isolamento & purificação , Estresse Fisiológico
20.
Chem Biol Interact ; 317: 108947, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31968208

RESUMO

Inflammatory responses play a remarkable role in the mechanisms of acute and chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis and lung cancer. Currently, there is a resurgence in the use of drugs from natural sources for various ailments as potent therapeutics. Berberine, an alkaloid prominent in the Chinese traditional system of medicine has been reported to exert therapeutic properties in various diseases. Nevertheless, the number of studies focusing on the curative potential of berberine in inflammatory diseases involving the respiratory system is limited. In this review, we have attempted to discuss the reported anti-inflammatory properties of berberine that function through several pathways such as, the NF-κB, ERK1/2 and p38 MAPK pathways which affect several pro-inflammatory cytokines in the pathophysiological processes involved in chronic respiratory diseases. This review would serve to provide valuable information to researchers who work in this field and a new direction in the field of drug discovery with respect to respiratory diseases.


Assuntos
Berberina/farmacologia , Inflamação/tratamento farmacológico , Doenças Respiratórias/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Doença Crônica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA