Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 329: 121682, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37094734

RESUMO

Anthropogenic cadmium (Cd) in arable soils is becoming a global concern due to its harmful effects on crop yield and quality. The current study examined the role of exogenously applied low molecular weight organic acids (LMWOAs) including oxalic acid (OxA), tartaric acid (TA) and high molecular weight organic acids (HMWOAs) like citric acid (CA) and humic acid (HA) for the bioavailability of Cd in wheat-rice cropping system. Maximum increase in root dry-weight, shoot dry-weight, and grain/paddy yields was recorded with HA for both crops. The HA significantly decreased AB-DTPA Cd in contaminated soils which remained 41% for wheat and 48% for rice compared with their respective controls. The minimum concentration of Cd in roots, shoots and grain/paddy was observed in HA treatment in both crops. The organic acids significantly increased the growth parameters, photosynthetic activity, and relative leaf moisture contents for both wheat and rice crops compared to that with the contaminated control. Application of OxA and TA increased the bioavailability of Cd in soils and plant tissues while CA and HA decreased the bioavailability of Cd in soils and plants. The highest decrease in Cd uptake, bioaccumulation, translocation factor, immobilization, translocation, harvest, and health risk indices were observed with HA while maximum increase was recorded with OxA for both wheat and rice. The results concluded that use of HMWOAs is effective in soil Cd immobilization being maximum with HA. While LMWOAs can be used for the phytoextraction of Cd in contaminated soils having maximum potential with OxA.


Assuntos
Oryza , Poluentes do Solo , Solo , Cádmio/análise , Triticum , Peso Molecular , Produtos Agrícolas , Grão Comestível/química , Ácido Oxálico , Poluentes do Solo/análise
2.
Chemosphere ; 313: 137385, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36436583

RESUMO

Cadmium (Cd) contamination is considered as a widespread concern at global scale which is serious threats to human health. Phytoremediation is an eco-friendly approach which can remove or immobilize Cd from the soil. Different organic and inorganic amendments can potentially enhance Cd phytoremediation efficiency but the comparison of farmyard manure (FM), elemental sulphur (S) and ethylenediaminetetraacetic acid (EDTA) for Cd phytoremediation through spider plants (Chlorophytum comosum L.) remained unanswered. The present study evaluated the efficiency of S (0.1 and 0.2%), EDTA (0.1 and 0.2%, represented as EDTA-0.1 and EDTA-0.2) and FM (0.5 and 1%, represented as FM-0.5 and FM-1) for remediation of Cd contaminated soils (50 and 100 mg kg-1, represented as Cd-50 and Cd-100) through spider plants. Results depicted that the highest shoots and roots dry biomass was found in FM treated plants followed by S, EDTA and control except in EDTA-0.2 treatment in which the lowest values of these parameters were observed. Application of FM-1 significantly increased the shoot dry weight (120%), root dry weight (99%), as well as photosynthetic attributes in Cd-50 as compared to control. Application of EDTA-0.2 increased the bioavailable fraction of Cd than control and the maximum increase was observed in Cd-100. The highest Cd concentrations in shoot and roots were found in EDTA treated plants followed by S, control and FM irrespective of Cd and amendment levels. Maximum Cd in roots (109%) and shoots (156%) was recorded in plants grown in Cd-100 with EDTA-0.2 than control. The maximum bioaccumulation factor, translocation index, harvest index and root to shoot translocation were observed with EDTA than control and other treatments. EDTA along with spider plants may enhance the uptake of Cd but lower biomass production in the highest dose of EDTA may questioned the efficiency of EDTA.


Assuntos
Cádmio , Poluentes do Solo , Humanos , Ácido Edético/farmacologia , Esterco , Poluentes do Solo/análise , Biodegradação Ambiental , Solo , Enxofre/farmacologia
3.
Toxics ; 10(2)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35202254

RESUMO

Contamination of soils with cadmium (Cd) and lead (Pb) has emerged as a serious environmental issue that reduces crop productivity. However, the metals tolerance and accumulation potential of quinoa (Chenopodium Quinoa Willd) under the combined stress of Cd and Pb has not yet been explored. In the present hydroponic study, the physiological and biochemical characteristics of quinoa exposed to Cd and Pb were explored. Four-week-old plants of quinoa genotype 'Puno' were grown under different concentrations of Cd (0, 50 and 100 µM), Pb (0, 250 and 500 µM) alone as well as in combinations. The results showed that with increasing Cd and Pb levels in the nutrient solution, the plant biomass, stomatal conductance and chlorophyll contents were decreased. However, the concurrent application of higher concentrations of Cd (100 µM) and Pb (500 µM) caused even more reduction in the plant biomass (more than 50% than the control) and physiological attributes. The combined application of Pb and Cd caused oxidative stress through an overproduction of H2O2 (10-fold) and TBARS (12.5-fold), leading to decrease in membrane stability (52%). The oxidative stress was alleviated by a 7-fold, 10-fold and 9-fold overactivation of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), respectively. An excessive uptake of Cd resulted in a limited uptake of Pb and K in the roots and shoots of quinoa plants. The Cd and Pb tolerance and uptake potential of Puno showed its ability to stabilize Cd and Pb in co-contaminated soils.

4.
Int J Phytoremediation ; 24(9): 933-944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34634959

RESUMO

Heavy metals pollution represents a serious issue for cultivable lands and ultimately threatens the worldwide food security. Lead (Pb) is a menacing metal which induces toxicity in plants and humans. Lead toxicity reduces the photosynthesis in plants, resulting in the reduction of plant growth and biomass. The excessive concentration of Pb in soil accumulates in plants body and enters into food chain, resulting in health hazards in humans. The phytoremediation is eco-friendly and cost-efficient technique to clean up the polluted soils. However, to the best of our Knowledge, there are very few reports addressing the enhancement of the phytoremediation potential of castor bean plants. Therefore, the present study aimed to investigate the potential role of glutathione (GSH), as a promising plant growth regulator, in enhancing the lead stress tolerance and phytoremediation potential of castor bean plants grown under lead stress conditions. The results indicated that Pb stress reduced the growth, biomass, chlorophyll pigments and gas exchange attributes of castor bean plants, causing oxidative damage in plants. Pb stress induced the oxidative stress markers and activities of antioxidant enzymes. On the other hand, the application of GSH reduced oxidative stress markers, but enhanced the growth, biomass, photosynthetic pigments, gas exchange attributes, Pb accumulation and antioxidant enzymes activities of lead-stressed castor bean plants. Both Pb uptake and Pb accumulation were increased by increasing concentrations of Pb in a dose-additive manner. However, at high dose of exogenous GSH (25 mg L-1) further enhancements were recorded in the Pb uptake in shoot by 48% and in root by 46%; Pb accumulation was further enhanced in shoot by 98% and in root by 101% in comparison with the respective control where no GSH was applied. Taken together, the findings revealed the promising role of GSH in enhancing the lead stress tolerance and phytoremediation potential of castor bean (Ricinus communis) plants cultivated in Pb-polluted soils through regulating leaf gas exchange, antioxidants machinery, and metal uptake.


The excessive concentration of Lead (Pb) in soil accumulates in plants body and enters into food chain, resulting in health hazards in humans. Phytoremediation is eco-friendly and cost-efficient technique to clean up the polluted soils. However, to the best of our knowledge, there are very few reports addressing the enhancement of the phytoremediation potential of castor bean plants. Therefore, the novelty of this research is that this research studied the potential role of glutathione (GSH), as a promising plant growth regulator, in enhancing the lead stress tolerance and phytoremediation potential of castor bean plants grown under lead stress conditions. The results indicated that Pb stress reduced the growth, biomass, chlorophyll pigments and gas exchange attributes of castor bean plants, causing oxidative damage in plants. Pb stress induced the oxidative stress markers and activities of antioxidant enzymes. On the other hand, the application of GSH reduced oxidative stress markers, but enhanced the growth, biomass, photosynthetic pigments, gas exchange attributes, Pb accumulation and antioxidant enzymes activities of lead-stressed castor bean plants. Taken together, the findings revealed the promising role of GSH in enhancing the lead stress tolerance and phytoremediation potential of castor bean plants cultivated in lead-polluted soils.


Assuntos
Ricinus communis , Poluentes do Solo , Antioxidantes , Biodegradação Ambiental , Glutationa , Chumbo/toxicidade , Plantas , Ricinus , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
5.
Plant Physiol Biochem ; 158: 43-52, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33296845

RESUMO

Globally, salinity threatens the agricultural crops productivity by inhibiting plant growth and development through osmotic stress and ionic cytotoxicity. The polygenic nature of salinity offers several pragmatic shotgun approaches to improve salinity tolerance. The present study investigated the potential of glutathione (GSH; 1 mM) as an antioxidant and moringa leaf extract (MLE; 3%) as an organic biostimulant applied in sequence as seed priming and foliar spray on wheat growth, physiology and metabolic adaptation under saline conditions (9.16 dS m-1). Plants without any treatment and water spray (H2O) were considered controls. Salinity induced osmotic stress reduced the plant tissue water status and photosynthetic performance, and perturbed ionic (K+/Na+, Ca2+/Na+, K++Ca2+/Na+) and hormonal (IAA, GA3, zeatin, ABA) homeostasis, consequently affected growth and yield in wheat. Sequenced applied MLE and/or GSH improved osmotic stress tolerance by stabilizing membrane integrity and decreasing electrolyte leakage. These positive results were owed to enhanced endogenous GSH and ascorbate levels. Improved tissue water status was attributed to increased osmotic adjustment, better ionic and hormonal homeostasis contributed to improving photosynthetic efficiency and growth under salinity. Exogenously applied MLE and GSH sequences improved grain yield, which was attributed to the maintenance of green leaf area and delayed senescence associated with an increase in photosynthetic pigments and chlorophyll fluorescence traits. In crux, exogenous applied MLE and/or GSH can be the best physiological strategy to reduce the deleterious effects of salinity and improve physiological and metabolic adaptation in wheat under saline field conditions.


Assuntos
Antioxidantes/farmacologia , Glutationa/farmacologia , Extratos Vegetais/farmacologia , Estresse Salino , Triticum/fisiologia , Adaptação Fisiológica , Moringa/química , Fotossíntese
6.
Chemosphere ; 246: 125809, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31927378

RESUMO

Toxic trace element pollution in the agricultural soils may negatively affect the plant growth. This study mainly focused on investigating the impact of co-composted biochar and farmyard manure (FYM) on wheat growth and cadmium (Cd) accumulation by plants. The different ratios of FYM and biochar were composted for two and half months and mixed in Cd-contaminated soil at a rate of 2% w/w of each treatment. After this, wheat seeds were sown in the soil at normal soil moisture (70% of soil water holding capacity (WHC)) level. After 50-day of sowing, both normal and drought stress (35% WHC) levels were applied and plants were harvested at 122 days after seed sowing. The results depicted that Cd and drought alone depressed the wheat growth, elevated the oxidative stress and Cd contents in wheat tissues. However, application of co-composted treatments increased the growth, yield, chlorophyll contents and minimized the oxidative stress in the leaves along with the reduction of Cd concentrations in wheat tissues mainly in grains. The amendments enhanced the post-harvest soil pH and minimized the soil bioavailable Cd. The increasing ratios of biochar in the compost were most effective in improving the growth and alleviating Cd toxicity and its concentration in grains. Overall, co-composted biochar and FYM might be suitable for reducing Cd in grains, but the field studies in different soils and plants are required to further explore the effects of these amendments before final recommendations.


Assuntos
Agricultura/métodos , Cádmio/metabolismo , Carvão Vegetal , Esterco , Poluentes do Solo/metabolismo , Triticum/crescimento & desenvolvimento , Cádmio/análise , Compostagem , Secas , Poluição Ambiental , Fazendas , Desenvolvimento Vegetal , Sementes/química , Solo/química , Poluentes do Solo/análise , Triticum/efeitos dos fármacos , Triticum/metabolismo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA