Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(15): e2116718119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35394874

RESUMO

Cells can sense and respond to mechanical forces in fibrous extracellular matrices (ECMs) over distances much greater than their size. This phenomenon, termed long-range force transmission, is enabled by the realignment (buckling) of collagen fibers along directions where the forces are tensile (compressive). However, whether other key structural components of the ECM, in particular glycosaminoglycans (GAGs), can affect the efficiency of cellular force transmission remains unclear. Here we developed a theoretical model of force transmission in collagen networks with interpenetrating GAGs, capturing the competition between tension-driven collagen fiber alignment and the swelling pressure induced by GAGs. Using this model, we show that the swelling pressure provided by GAGs increases the stiffness of the collagen network by stretching the fibers in an isotropic manner. We found that the GAG-induced swelling pressure can help collagen fibers resist buckling as the cells exert contractile forces. This mechanism impedes the alignment of collagen fibers and decreases long-range cellular mechanical communication. We experimentally validated the theoretical predictions by comparing the intensity of collagen fiber alignment between cellular spheroids cultured on collagen gels versus collagen­GAG cogels. We found significantly lower intensities of aligned collagen in collagen­GAG cogels, consistent with the prediction that GAGs can prevent collagen fiber alignment. The role of GAGs in modulating force transmission uncovered in this work can be extended to understand pathological processes such as the formation of fibrotic scars and cancer metastasis, where cells communicate in the presence of abnormally high concentrations of GAGs.


Assuntos
Comunicação Celular , Matriz Extracelular , Glicosaminoglicanos , Fenômenos Biomecânicos , Fenômenos Fisiológicos Celulares , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibrose , Glicosaminoglicanos/metabolismo , Humanos , Neoplasias
2.
Sci Rep ; 11(1): 16478, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389738

RESUMO

Here we present a microengineered soft-robotic in vitro platform developed by integrating a pneumatically regulated novel elastomeric actuator with primary culture of human cells. This system is capable of generating dynamic bending motion akin to the constriction of tubular organs that can exert controlled compressive forces on cultured living cells. Using this platform, we demonstrate cyclic compression of primary human endothelial cells, fibroblasts, and smooth muscle cells to show physiological changes in their morphology due to applied forces. Moreover, we present mechanically actuatable organotypic models to examine the effects of compressive forces on three-dimensional multicellular constructs designed to emulate complex tissues such as solid tumors and vascular networks. Our work provides a preliminary demonstration of how soft-robotics technology can be leveraged for in vitro modeling of complex physiological tissue microenvironment, and may enable the development of new research tools for mechanobiology and related areas.


Assuntos
Robótica , Engenharia Tecidual , Força Compressiva , Células Endoteliais/fisiologia , Fibroblastos/fisiologia , Humanos , Técnicas In Vitro , Miócitos de Músculo Liso/fisiologia , Invasividade Neoplásica , Robótica/instrumentação , Robótica/métodos
3.
Adv Mater ; 32(8): e1905719, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31851400

RESUMO

The extracellular matrix (ECM) has force-responsive (i.e., mechanochemical) properties that enable adaptation to mechanical loading through changes in fibrous network structure and interfiber bonding. Imparting such properties into synthetic fibrous materials will allow reinforcement under mechanical load, the potential for material self-adhesion, and the general mimicking of ECM. Multifiber hydrogel networks are developed through the electrospinning of multiple fibrous hydrogel populations, where fibers contain complementary chemical moieties (e.g., aldehyde and hydrazide groups) that form covalent bonds within minutes when brought into contact under mechanical load. These fiber interactions lead to microscale anisotropy, as well as increased material stiffness and plastic deformation. Macroscale structures (e.g., tubes and layered scaffolds) are fabricated from these materials through interfiber bonding and adhesion when placed into contact while maintaining a microscale fibrous architecture. The design principles for engineering plasticity described can be applied to numerous material systems to introduce unique properties, from textiles to biomedical applications.


Assuntos
Adesivos/química , Hidrogéis/química , Módulo de Elasticidade , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Humanos , Ácido Hialurônico/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Oligopeptídeos/química , Oligopeptídeos/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(14): 6790-6799, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30894480

RESUMO

While cells within tissues generate and sense 3D states of strain, the current understanding of the mechanics of fibrous extracellular matrices (ECMs) stems mainly from uniaxial, biaxial, and shear tests. Here, we demonstrate that the multiaxial deformations of fiber networks in 3D cannot be inferred solely based on these tests. The interdependence of the three principal strains gives rise to anomalous ratios of biaxial to uniaxial stiffness between 8 and 9 and apparent Poisson's ratios larger than 1. These observations are explained using a microstructural network model and a coarse-grained constitutive framework that predicts the network Poisson effect and stress-strain responses in uniaxial, biaxial, and triaxial modes of deformation as a function of the microstructural properties of the network, including fiber mechanics and pore size of the network. Using this theoretical approach, we found that accounting for the Poisson effect leads to a 100-fold increase in the perceived elastic stiffness of thin collagen samples in extension tests, reconciling the seemingly disparate measurements of the stiffness of collagen networks using different methods. We applied our framework to study the formation of fiber tracts induced by cellular forces. In vitro experiments with low-density networks showed that the anomalous Poisson effect facilitates higher densification of fibrous tracts, associated with the invasion of cancerous acinar cells. The approach developed here can be used to model the evolving mechanics of ECM during cancer invasion and fibrosis.


Assuntos
Carcinoma de Células Acinares , Colágeno , Matriz Extracelular , Modelos Moleculares , Proteínas de Neoplasias , Animais , Carcinoma de Células Acinares/química , Carcinoma de Células Acinares/metabolismo , Carcinoma de Células Acinares/patologia , Linhagem Celular Tumoral , Colágeno/química , Colágeno/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Ratos
5.
Cancer Discov ; 9(1): 64-81, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30279173

RESUMO

Physical changes in skin are among the most visible signs of aging. We found that young dermal fibroblasts secrete high levels of extracellular matrix (ECM) constituents, including proteoglycans, glycoproteins, and cartilage-linking proteins. The most abundantly secreted was HAPLN1, a hyaluronic and proteoglycan link protein. HAPLN1 was lost in aged fibroblasts, resulting in a more aligned ECM that promoted metastasis of melanoma cells. Reconstituting HAPLN1 inhibited metastasis in an aged microenvironment, in 3-D skin reconstruction models, and in vivo. Intriguingly, aged fibroblast-derived matrices had the opposite effect on the migration of T cells, inhibiting their motility. HAPLN1 treatment of aged fibroblasts restored motility of mononuclear immune cells, while impeding that of polymorphonuclear immune cells, which in turn affected regulatory T-cell recruitment. These data suggest that although age-related physical changes in the ECM can promote tumor cell motility, they may adversely affect the motility of some immune cells, resulting in an overall change in the immune microenvironment. Understanding the physical changes in aging skin may provide avenues for more effective therapy for older patients with melanoma. SIGNIFICANCE: These data shed light on the mechanochemical interactions that occur between aged skin, tumor, and immune cell populations, which may affect tumor metastasis and immune cell infiltration, with implications for the efficacy of current therapies for melanoma.See related commentary by Marie and Merlino, p. 19.This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Envelhecimento , Colágeno/metabolismo , Melanoma/metabolismo , Pele/metabolismo , Animais , Células Cultivadas , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Humanos , Sistema Imunitário , Melanoma/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Proteoglicanas/metabolismo , Pele/fisiopatologia , Microambiente Tumoral
6.
Sci Rep ; 8(1): 10854, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30022076

RESUMO

The extracellular matrix (ECM) is the primary biomechanical environment that interacts with tendon cells (tenocytes). Stresses applied via muscle contraction during skeletal movement transfer across structural hierarchies to the tenocyte nucleus in native uninjured tendons. Alterations to ECM structural and mechanical properties due to mechanical loading and tissue healing may affect this multiscale strain transfer and stress transmission through the ECM. This study explores the interface between dynamic loading and tendon healing across multiple length scales using living tendon explants. Results show that macroscale mechanical and structural properties are inferior following high magnitude dynamic loading (fatigue) in uninjured living tendon and that these effects propagate to the microscale. Although similar macroscale mechanical effects of dynamic loading are present in healing tendon compared to uninjured tendon, the microscale properties differed greatly during early healing. Regression analysis identified several variables (collagen and nuclear disorganization, cellularity, and F-actin) that directly predict nuclear deformation under loading. Finite element modeling predicted deficits in ECM stress transmission following fatigue loading and during healing. Together, this work identifies the multiscale response of tendon to dynamic loading and healing, and provides new insight into microenvironmental features that tenocytes may experience following injury and after cell delivery therapies.


Assuntos
Matriz Extracelular/patologia , Estresse Mecânico , Traumatismos dos Tendões/patologia , Traumatismos dos Tendões/terapia , Tendões/fisiologia , Cicatrização , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Procedimentos de Cirurgia Plástica
7.
Biophys J ; 114(2): 450-461, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29401442

RESUMO

Contractile cells can reorganize fibrous extracellular matrices and form dense tracts of fibers between neighboring cells. These tracts guide the development of tubular tissue structures and provide paths for the invasion of cancer cells. Here, we studied the mechanisms of the mechanical plasticity of collagen tracts formed by contractile premalignant acinar cells and fibroblasts. Using fluorescence microscopy and second harmonic generation, we quantified the collagen densification, fiber alignment, and strains that remain within the tracts after cellular forces are abolished. We explained these observations using a theoretical fiber network model that accounts for the stretch-dependent formation of weak cross-links between nearby fibers. We tested the predictions of our model using shear rheology experiments. Both our model and rheological experiments demonstrated that increasing collagen concentration leads to substantial increases in plasticity. We also considered the effect of permanent elongation of fibers on network plasticity and derived a phase diagram that classifies the dominant mechanisms of plasticity based on the rate and magnitude of deformation and the mechanical properties of individual fibers. Plasticity is caused by the formation of new cross-links if moderate strains are applied at small rates or due to permanent fiber elongation if large strains are applied over short periods. Finally, we developed a coarse-grained model for plastic deformation of collagen networks that can be employed to simulate multicellular interactions in processes such as morphogenesis, cancer invasion, and fibrosis.


Assuntos
Colágeno/metabolismo , Fenômenos Mecânicos , Animais , Fenômenos Biomecânicos , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Camundongos , Modelos Biológicos , Células NIH 3T3 , Ratos , Esferoides Celulares/metabolismo , Estresse Mecânico
8.
Proc Natl Acad Sci U S A ; 113(49): 14043-14048, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27872289

RESUMO

In native states, animal cells of many types are supported by a fibrous network that forms the main structural component of the ECM. Mechanical interactions between cells and the 3D ECM critically regulate cell function, including growth and migration. However, the physical mechanism that governs the cell interaction with fibrous 3D ECM is still not known. In this article, we present single-cell traction force measurements using breast tumor cells embedded within 3D collagen matrices. We recreate the breast tumor mechanical environment by controlling the microstructure and density of type I collagen matrices. Our results reveal a positive mechanical feedback loop: cells pulling on collagen locally align and stiffen the matrix, and stiffer matrices, in return, promote greater cell force generation and a stiffer cell body. Furthermore, cell force transmission distance increases with the degree of strain-induced fiber alignment and stiffening of the collagen matrices. These findings highlight the importance of the nonlinear elasticity of fibrous matrices in regulating cell-ECM interactions within a 3D context, and the cell force regulation principle that we uncover may contribute to the rapid mechanical tissue stiffening occurring in many diseases, including cancer and fibrosis.


Assuntos
Neoplasias da Mama/patologia , Colágeno/metabolismo , Matriz Extracelular/patologia , Fenômenos Biomecânicos , Neoplasias da Mama/metabolismo , Comunicação Celular/fisiologia , Linhagem Celular Tumoral , Colágeno/química , Elasticidade , Humanos , Mecanorreceptores/fisiologia , Microscopia Confocal , Análise Serial de Proteínas/métodos
9.
Biomacromolecules ; 15(1): 143-9, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24328228

RESUMO

Sticky ends are unpaired nucleotides at the ends of DNA molecules that can associate to link DNA segments. Self-assembly of DNA molecules via sticky ends is currently used to grow DNA structures with desired architectures. The sticky end links are the weakest parts of such structures. In this work, the strength of sticky end links is studied by computational means. The number of basepairs in the sticky end and the sequence are varied, and the response to tension along the axis of the molecule is evaluated using a full atomistic model. It is observed that, generally, increasing the number of basepairs in the sticky end increases the strength, but the central factor controlling this parameter is the basepair sequence. The sticky ends are divided into two classes of low and high strength. The second class has strength comparable with that of a double stranded molecule with one nick in one of the strands. The strength of the first class is roughly half that of the strong sticky ends. For all strong sticky ends tested, the enhanced stability is associated with the formation of an unusually stable complex composed from two basepairs and two flanking bases of certain sequence. This complex rotates and aligns with the direction of the force allowing significant deformation and providing enhanced strength. This is similar to a mechanism recently suggested to enhance the mechanical stability of an RNA kissing loop from the Moloney murine leukemia virus. The model is tested against experimental structural data for sticky ends and against published simulation results for the stretch of double stranded DNA. The results provide guidance for the design of DNA self-assembled structures and indicate the types of sticky ends desirable if maximizing the strength and stability of these structures is targeted.


Assuntos
DNA/química , DNA/metabolismo , Resistência à Tração/fisiologia , Cristalografia por Raios X , DNA/genética , Estrutura Secundária de Proteína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA