Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 15545, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29138462

RESUMO

Cystic fibrosis (CF) is characterized by recurrent airway infections with antibiotic-resistant bacteria and chronic inflammation. Chicken cathelicin-2 (CATH-2) has been shown to exhibit antimicrobial activity against antibiotic-resistant bacteria and to reduce inflammation. In addition, exogenous pulmonary surfactant has been suggested to enhance pulmonary drug delivery. It was hypothesized that CATH-2 when combined with an exogenous surfactant delivery vehicle, bovine lipid extract surfactant (BLES), would exhibit antimicrobial activity against CF-derived bacteria and downregulate inflammation. Twelve strains of CF-pathogens were exposed to BLES+CATH-2 in vitro and killing curves were obtained to determine bactericidal activity. Secondly, heat-killed bacteria were administered in vivo to elicit a pro-inflammatory response with either a co-administration or delayed administration of BLES+CATH-2 to assess the antimicrobial-independent, anti-inflammatory properties of BLES+CATH-2. CATH-2 alone exhibited potent antimicrobial activity against all clinical strains of antibiotic-resistant bacteria, while BLES+CATH-2 demonstrated a reduction, but significant antimicrobial activity against bacterial isolates. Furthermore, BLES+CATH-2 reduced inflammation in vivo when either co-administered with killed bacteria or after delayed administration. The use of a host-defense peptide combined with an exogenous surfactant compound, BLES+CATH-2, is shown to exhibit antimicrobial activity against antibiotic-resistant CF bacterial isolates and reduce inflammation.


Assuntos
Achromobacter denitrificans/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Produtos Biológicos/farmacologia , Fibrose Cística/terapia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Adulto , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Doença Crônica , Fibrose Cística/microbiologia , Farmacorresistência Bacteriana , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Surfactantes Pulmonares/farmacologia , Doenças Respiratórias/microbiologia , Tensoativos/farmacologia
2.
Infect Immun ; 85(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28947647

RESUMO

The development of antibiotic resistance by Pseudomonas aeruginosa is a major concern in the treatment of bacterial pneumonia. In the search for novel anti-infective therapies, the chicken-derived peptide cathelicidin-2 (CATH-2) has emerged as a potential candidate, with strong broad-spectrum antimicrobial activity and the ability to limit inflammation by inhibiting Toll-like receptor 2 (TLR2) and TLR4 activation. However, as it is unknown how CATH-2 affects inflammation in vivo, we investigated how CATH-2-mediated killing of P. aeruginosa affects lung inflammation in a murine model. First, murine macrophages were used to determine whether CATH-2-mediated killing of P. aeruginosa reduced proinflammatory cytokine production in vitro Next, a murine lung model was used to analyze how CATH-2-mediated killing of P. aeruginosa affects neutrophil and macrophage recruitment as well as cytokine/chemokine production in the lung. Our results show that CATH-2 kills P. aeruginosa in an immunogenically silent manner both in vitro and in vivo Treatment with CATH-2-killed P. aeruginosa showed reduced neutrophil recruitment to the lung as well as inhibition of cytokine and chemokine production, compared to treatment with heat- or gentamicin-killed bacteria. Together, these results show the potential for CATH-2 as a dual-activity antibiotic in bacterial pneumonia, which can both kill P. aeruginosa and prevent excessive inflammation.


Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Inflamação/prevenção & controle , Pulmão/microbiologia , Pneumonia Bacteriana/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Linhagem Celular , Quimiocinas/imunologia , Galinhas/imunologia , Citocinas/imunologia , Modelos Animais de Doenças , Imunidade Inata , Inflamação/imunologia , Pulmão/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Pneumonia Bacteriana/prevenção & controle , Infecções por Pseudomonas/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA