Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39273572

RESUMO

Chalcones have been utilized for centuries as foods and medicines across various cultures and traditions worldwide. This paper concisely overviews their biosynthesis as specialized metabolites in plants and their significance, potential, efficacy, and possibility as future medicines. This is followed by a more in-depth exploration of naturally occurring chalcones and their corresponding mechanisms of action in human bodies. Based on their mechanisms of action, chalcones exhibit many pharmacological properties, including antioxidant, anti-inflammatory, anticancer, antimalarial, antiviral, and antibacterial properties. Novel naturally occurring chalcones are also recognized as potential antidiabetic drugs, and their effect on the GLUT-4 transporter is investigated. In addition, they are examined for their anti-inflammatory effects, focusing on chalcones used for future pharmaceutical utilization. Chalcones also bind to specific receptors and toxins that prevent bacterial and viral infections. Chalcones exhibit physiological protective effects on the biological degradation of different systems, including demyelinating neurodegenerative diseases and preventing hypertension or hyperlipidemia. Chalcones that are/were in clinical trials have been included as a separate section. By revealing the many biological roles of chalcones and their impact on medicine, this paper underlines the significance of naturally occurring chalcones and their extension to patient care, providing the audience with an index of topic-relevant information.


Assuntos
Chalconas , Chalconas/farmacologia , Chalconas/química , Humanos , Ensaios Clínicos como Assunto , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico
2.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892472

RESUMO

Triple-negative breast cancer (TNBC) cells are devoid of estrogen receptors (ERs), progesterone receptor (PRs), and human epidermal growth factor receptor 2 (HER2), and it (TNBC) counts for about 10-15% of all breast cancers. TNBC is highly invasive, having a faster growth rate and a higher risk of metastasis and recurrence. Still, chemotherapy is one of the widely used options for treating TNBC. This study reviewed the histological and molecular characterization of TNBC subtypes, signaling pathways that are aberrantly expressed, and small molecules targeting these pathways, as either single agents or in combination with other therapeutic agents like chemotherapeutics, immunotherapeutics, and antibody-drug conjugates; their mechanisms of action, challenges, and future perspectives were also reviewed. A detailed analytical review was carried out using the literature collected from the SciFinder, PubMed, ScienceDirect, Google Scholar, ACS, Springer, and Wiley databases. Several small molecule inhibitors were found to be therapeutics for treating TNBC. The mechanism of action and the different signaling pathways through which the small molecules exert their effects were studied, including clinical trials, if reported. These small molecule inhibitors include buparlisib, everolimus, vandetanib, apatinib, olaparib, salidroside, etc. Some of the signaling pathways involved in TNBC, including the VEGF, PARP, STAT3, MAPK, EGFR, P13K, and SRC pathways, were discussed. Due to the absence of these biomarkers, drug development for treating TNBC is challenging, with chemotherapy being the main therapeutic agent. However, chemotherapy is associated with chemoresistance and a high toxicity to healthy cells as side effects. Hence, there is a continuous demand for small-molecule inhibitors that specifically target several signaling pathways that are abnormally expressed in TNBC. We attempted to include all the recent developments in this field. Any omission is truly unintentional.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Feminino , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Terapia de Alvo Molecular , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico
3.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396940

RESUMO

Organometallic drug development is still in its early stage, but recent studies show that organometallics having iron as the central atom have the possibility of becoming good drug candidates because iron is an important micro-nutrient, and it is compatible with many biological systems, including the human body. Being an eco-friendly Lewis acid, iron can accept the lone pair of electrons from imino(sp2)-nitrogen, and the resultant iron-imine complexes with iron as a central atom have the possibility of interacting with several proteins and enzymes in humans. Iron-imine complexes have demonstrated significant potential with anticancer, bactericidal, fungicidal, and other medicinal activities in recent years. This article systematically discusses major synthetic methods and pharmacological potentials of iron-imine complexes having in vitro activity to significant clinical performance from 2016 to date. In a nutshell, this manuscript offers a simplistic view of iron complexes in medicinal inorganic chemistry: for instance, iron is presented as an "eco-friendly non-toxic" metal (as opposed to platinum) that will lead to non-toxic pharmaceuticals. The abundant literature on iron chelators shows that many iron complexes, particularly if redox-active in cells, can be quite cytotoxic, which can be beneficial for future targeted therapies. While we made every effort to include all the related papers, any omission is purely unintentional.


Assuntos
Antineoplásicos , Complexos de Coordenação , Humanos , Iminas , Ferro , Quelantes de Ferro , Oxirredução , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/metabolismo , Complexos de Coordenação/farmacologia , Ligantes
4.
Curr Issues Mol Biol ; 45(3): 1914-1949, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36975494

RESUMO

Pancreatic enzymes assist metabolic digestion, and hormones like insulin and glucagon play a critical role in maintaining our blood sugar levels. A malignant pancreas is incapable of doing its regular functions, which results in a health catastrophe. To date, there is no effective biomarker to detect early-stage pancreatic cancer, which makes pancreatic cancer the cancer with the highest mortality rate of all cancer types. Primarily, mutations of the KRAS, CDKN2A, TP53, and SMAD4 genes are responsible for pancreatic cancer, of which mutations of the KRAS gene are present in more than 80% of pancreatic cancer cases. Accordingly, there is a desperate need to develop effective inhibitors of the proteins that are responsible for the proliferation, propagation, regulation, invasion, angiogenesis, and metastasis of pancreatic cancer. This article discusses the effectiveness and mode of action at the molecular level of a wide range of small molecule inhibitors that include pharmaceutically privileged molecules, compounds under clinical trials, and commercial drugs. Both natural and synthetic small molecule inhibitors have been counted. Anti-pancreatic cancer activity and related benefits of using single and combined therapy have been discussed separately. This article sheds light on the scenario, constraints, and future aspects of various small molecule inhibitors for treating pancreatic cancer-the most dreadful cancer so far.

5.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36768973

RESUMO

Epidermal growth factor receptors (EGFRs) are a class of receptor tyrosine kinase that are also called ErbB1 and HER1. EGFR tyrosine kinase activity inhibition is considered a promising therapeutic strategy for the treatment of cancer. Many small-molecule inhibitors of EGFR tyrosine kinase (EGFR-TK), from medicinally privileged molecules to commercial drugs, have been overviewed. Particular attention has been paid to the structure of the molecule and its mechanism of action if reported. Subsequent classification of the molecules under discussion has been carried out. Both natural and synthetic and reversible and irreversible EGFR-tyrosine kinase inhibitors have been discussed. Various types of cancers that are caused by overexpression of the EGFR gene, their possible molecular origins, and their natures have also been counted in this article. Because the EGFR signaling pathway controls the proliferation, growth, survival, and differentiation of cells, and the mutated EGFR gene overproduces EGFR protein, which ultimately causes several types of cancer, proper understanding of the molecular dynamics between the protein structure and its inhibitors will lead to more effective and selective EGFR-TKIs, which in turn will be able to save more lives in the battle against cancer.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Neoplasias , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Receptores ErbB/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas Tirosina Quinases , Neoplasias Pulmonares/tratamento farmacológico
6.
J Pineal Res ; 74(2): e12847, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36456538

RESUMO

In recent days, the hike in obesity-mediated epidemics across the globe and the prevalence of obesity-induced cardiovascular disease has become one of the chief grounds for morbidity and mortality. This epidemic-driven detrimental events in the cardiac tissues start with the altered distribution and metabolism pattern of high-density lipoprotein and low-density lipoprotein (LDL) leading to cholesterol (oxidized LDL) deposition on the arterial wall and atherosclerotic plaque generation, followed by vascular spasms and infarction. Subsequently, obesity-triggered metabolic malfunctions induce free radical generation which may further trigger pro-inflammatory signaling and nuclear factor kappa-light-chain-enhancer of activated B cells transcriptional factor, thus inducing interferon-gamma, tumor necrosis factor-alpha, and inducible nitric oxide synthase. This terrifying cardiomyopathy can be further aggravated in type 2 diabetes mellitus, thereby making obese diabetic patients prone toward the development of myocardial infarction (MI) or stroke in comparison to their nondiabetic counterparts. The accelerated oxidative stress and pro-inflammatory response induced cardiomyocyte hypertrophy, followed by apoptosis in obese diabetic individuals, causing progression of athero-thrombotic vascular disease. Being an efficient antioxidative and anti-inflammatory indolamine, melatonin effectively inhibits lipid peroxidation, pro-inflammatory reactions, thereby resolving free radical-induced myocardial damages along with maintaining antioxidant reservoir to preserve cardiovascular integrity. Prolonged melatonin treatment maintains balanced body weight and serum total cholesterol concentration by inhibiting cholesterol synthesis and promoting cholesterol catabolism. Additionally, melatonin promotes macrophage polarization toward the anti-inflammatory state, providing a proper shield during the recovery period. Therefore, the protective role of melatonin in maintaining the lipid metabolism homeostasis and blocking the atherosclerotic plaque rupture could be targeted as the possible therapeutic strategy for the management of obesity-induced acute MI. This review aimed at orchestrating the efficacy of melatonin in ameliorating irrevocable oxidative cardiovascular damage induced by the obesity-diabetes correlation.


Assuntos
Diabetes Mellitus Tipo 2 , Melatonina , Infarto do Miocárdio , Placa Aterosclerótica , Humanos , Melatonina/farmacologia , Melatonina/uso terapêutico , Placa Aterosclerótica/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Obesidade/complicações , Obesidade/tratamento farmacológico , Infarto do Miocárdio/tratamento farmacológico , Antioxidantes/farmacologia , Estresse Oxidativo , Apoptose , Colesterol/metabolismo , Colesterol/farmacologia , Anti-Inflamatórios/farmacologia , Macrófagos/metabolismo
7.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077439

RESUMO

Trypanosoma cruzi (T. cruzi) is a parasite that affects humans and other mammals. T. cruzi depends on glycolysis as a source of adenosine triphosphate (ATP) supply, and triosephosphate isomerase (TIM) plays a key role in this metabolic pathway. This enzyme is an attractive target for the design of new trypanocidal drugs. In this study, a ligand-based virtual screening (LBVS) from the ZINC15 database using benzimidazole as a scaffold was accomplished. Later, a molecular docking on the interface of T. cruzi TIM (TcTIM) was performed and the compounds were grouped by interaction profiles. Subsequently, a selection of compounds was made based on cost and availability for in vitro evaluation against blood trypomastigotes. Finally, the compounds were analyzed by molecular dynamics simulation, and physicochemical and pharmacokinetic properties were determined using SwissADME software. A total of 1604 molecules were obtained as potential TcTIM inhibitors. BP2 and BP5 showed trypanocidal activity with half-maximal lytic concentration (LC50) values of 155.86 and 226.30 µM, respectively. Molecular docking and molecular dynamics simulation analyzes showed a favorable docking score of BP5 compound on TcTIM. Additionally, BP5 showed a low docking score (-5.9 Kcal/mol) on human TIM compared to the control ligand (-7.2 Kcal/mol). Both compounds BP2 and BP5 showed good physicochemical and pharmacokinetic properties as new anti-T. cruzi agents.


Assuntos
Tripanossomicidas , Trypanosoma cruzi , Animais , Benzimidazóis/química , Benzimidazóis/farmacologia , Humanos , Ligantes , Mamíferos/metabolismo , Simulação de Acoplamento Molecular , Triose-Fosfato Isomerase/metabolismo , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/metabolismo
8.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35409064

RESUMO

Mutations of RAS oncogenes are responsible for about 30% of all human cancer types, including pancreatic, lung, and colorectal cancers. While KRAS1 is a pseudogene, mutation of KRAS2 (commonly known as KRAS oncogene) is directly or indirectly associated with human cancers. Among the RAS family, KRAS is the most abundant oncogene related to uncontrolled cellular proliferation to generate solid tumors in many types of cancer such as pancreatic carcinoma (over 80%), colon carcinoma (40-50%), lung carcinoma (30-50%), and other types of cancer. Once described as 'undruggable', RAS proteins have become 'druggable', at least to a certain extent, due to the continuous efforts made during the past four decades. In this account, we discuss the chemistry and biology (wherever available) of the small-molecule inhibitors (synthetic, semi-synthetic, and natural) of KRAS proteins that were published in the past decades. Commercial drugs, as well as investigational molecules from preliminary stages to clinical trials, are categorized and discussed in this study. In summary, this study presents an in-depth discussion of RAS proteins, classifies the RAS superfamily, and describes the molecular mechanism of small-molecule RAS inhibitors.


Assuntos
Antineoplásicos , Carcinoma , Neoplasias Pulmonares , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma/tratamento farmacológico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
9.
Front Chem ; 9: 725892, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604170

RESUMO

World Health Organization (WHO) identified twenty tropical disease categories as neglected tropical diseases (NTDs). Chagas' disease (also known as American trypanosomiasis) and leishmaniasis are two major classes of NTDs. The total number of mortality, morbidity, and disability attributed each year due to these two categories of diseases in magnitudes is much higher than the so-called elite diseases like cancer, diabetes, AIDS, cardiovascular and neurodegenerative diseases. Impoverished communities around the world are the major victim of NTDs. The development of new and novel drugs in the battle against Chagas' disease and leishmaniasis is highly anticipated. An easy and straightforward on-water green access to synthesize benzopyrazines is reported. This ultrasound-assisted procedure does not require any catalyst/support/additive/hazardous solvents and maintains a high atom economy. A series of eleven benzopyrazines has been synthesized, and most of the synthesized compounds possess the drug-likeness following Lipinski's "Rule of 5". Benzopyrazines 3 and 4 demonstrated moderate leishmanicidal activity against L. mexicana (M378) strain. The selective lead compound 1 showed good leishmanicidal, and trypanocidal activities (in vitro) against both L. mexicana (M378) and T. cruzi (NINOA) strains compared to the standard controls. The in vitro trypanocidal and leishmanicidal activities of the lead compound 1 have been validated by molecular docking studies against four biomolecular drug targets viz. T. cruzi histidyl-tRNA synthetase, T. cruzi trans-sialidase, leishmanial rRNA A-site, and leishmania major N-myristoyl transferase.

10.
Toxicol Rep ; 7: 1551-1563, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33294386

RESUMO

Phenylhydrazine (PHZ), an intermediate in the synthesis of fine chemicals is toxic for human health and environment. Despite of having severe detrimental effects on different physiological systems, exposure of erythrocytes to PHZ cause destruction of haemoglobin and membrane proteins leading to iron release and complete haemolysis of red blood cells (RBC). Involvement of oxidative stress behind such action triggers the urge for searching a potent antioxidant. The benefits of consuming olive oil is attributed to its 75% oleic acid (OA) content in average. Olive oil is the basic component of Mediterranean diet. Hence, OA has been chosen in our present in vitro study to explore its efficacy against PHZ (1 mM) induced alterations in erythrocytes. Four different concentrations of OA (0.01 nM, 0.02 nM, 0.04 nM and 0.06 nM) were primarily experimented with, among which 0.06 nM OA has shown to give maximal protection. This study demonstrates the capability of OA in preserving the morphology, intracellular antioxidant status and the activities of metabolic enzymes of RBCs that have been diminished by PHZ, through its antioxidant mechanisms. The results of the present study firmly establish OA as a promising antioxidant for conserving the health of erythrocyte from PHZ toxicity which indicate toward future possible use of OA either singly or in combination with other dietary components for protection of erythrocytes against PHZ induced toxic cellular changes.

11.
Mini Rev Med Chem ; 20(20): 2193-2206, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32682375

RESUMO

To date, more than a thousand research articles have been published detailing various regio-, stereo-, chemo-, and enantioselective specific synthesis of the cyclic sulfonamides (sultams). Although enormous synthetic efforts were made, but bioactivities of sultams have not been widely investigated. Sultams are the sulfur analogs of lactams (cyclic amides) which demonstrate a broad range of medicinal activities and several lactam drugs are commercially available. In contrast, only a few sultam drugs are commercially available, while the presence of two oxygens on sulfur in sultam motifs can serve as a better H-bond acceptor than lactam scaffolds. One of the major objectives of this minireview is to draw appropriate attention from the medicinal/pharmaceutical chemists to conduct indepth research on sultam derivatives targeted to the development of new drugs. This article gives a brief account of the synthesis, potential bioactivity, and mechanisms of therapeutic action of four to seven-membered sultam derivatives. Based on the available literature, this is the first effort to consolidate only the medicinally privileged sultam molecules and drugs under the same umbrella. While every effort was taken to comprise all the relevant reports related to bioactive sultams, any oversight is truly unintentional.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Antivirais/farmacologia , Hipoglicemiantes/farmacologia , Sulfonamidas/síntese química , Sulfonamidas/farmacologia , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antioxidantes/síntese química , Antioxidantes/química , Antivirais/síntese química , Antivirais/química , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Estrutura Molecular , Estereoisomerismo , Sulfonamidas/química
12.
Life Sci ; 250: 117596, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32240678

RESUMO

AIMS: ß-Estradiol (ß-E), one of the chemical forms of female gonad hormone exhibited antioxidant efficacy in biochemical system, in vitro. The aim of the study was to investigate whether any other mechanism of protection by ß-E to hepatic mitochondria in presence of stressor agent i.e.,a combination of Cu2+ and ascorbic acid is involved. MAIN METHODS: Freshly prepared goat liver mitochondria was incubated with stressors and 1 µM ß-E and post incubated with the same concentration at 37 °C at pH 7.4. Mitochondrial viability, biomarkers of oxidative stress, activities of Krebs cycle enzymes, mitochondrial membrane potential, Ca2+ permeability were measured. Mitochondrial morphology and binding pattern of ß-E with stressors were also studied. KEY FINDINGS: Upon incubation of mitochondria with Cu, ascorbic acid and their combination there is a significant decline in activities of four of Krebs cycle enzymes in an uncompetitive manner with a concomitant increase in Ca2+ permeability and membrane potential of inner mitochondrial membrane, which is withdrawn during co-incubation with ß-E, but was not reversed during post incubation with the ß-E. The final studies on mitochondrial membrane morphology using scanning electron microscope also exhibited damage. Isothermal titration calorimetry data also showed the negative heat change in the mixture of ß-E with ascorbic acid and also its combination with Cu2+. SIGNIFICANCE: Our results for the first time demonstrated that ß-E protects againstCu2+-ascorbate induced oxidative stress by binding with ascorbic acid. The new mechanism of binding of ß-E with stress agents may have a future therapeutic relevance.


Assuntos
Ácido Ascórbico/efeitos adversos , Cobre/efeitos adversos , Estradiol/farmacologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Feminino , Glutationa/metabolismo , Cabras , Técnicas In Vitro , Peroxidação de Lipídeos , Potencial da Membrana Mitocondrial , Mitocôndrias Hepáticas/enzimologia , Oxirredução , Permeabilidade , Ligação Proteica
13.
Life Sci ; 244: 117324, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31958420

RESUMO

AIMS: The aim of the present study was to evaluate the possible antioxidant role of oleic acid (OA) against Cd-induced injuries in the heart and liver tissues of male Wistar rats. MAIN METHODS: Rats were treated with either vehicle (control), or OA (10 mg/kg b.w., fed orally), or Cd (0.44 mg/kg b.w., s.c.), or both (OA + Cd) for 15 days. Following completion of the treatment period, biomarkers of organ damage and oxidative stress including ROS, activities of antioxidant enzymes and their level, activities of Krebs cycle enzymes and respiratory chain enzymes were measured. Levels of interleukins (IL-1ß, IL-6, IL-10), tumor necrosis factor (TNF-α) and nuclear factor kappa B (NFκB) were estimated to evaluate the state of inflammation. In addition, changes in mitochondrial membrane potential and status of cytochrome c (Cyt c) were also studied. KEY FINDINGS: Pre-treatment of rats with OA significantly protected against Cd-induced detrimental changes possibly by decreasing endogenous ROS through regulation of antioxidant defense system, inflammatory responses and activities of metabolic enzymes. Moreover, OA was also found to restore mitochondrial membrane potential possibly by regulating Cyt c leakage thereby increasing mitochondrial viability. SIGNIFICANCE: Our results for the first time demonstrated systematically that OA provided protection against Cd-induced oxidative stress mediated injuries in rat heart and liver tissues through its antioxidant mechanism. The results raise the possibility of using OA singly or in combination with other antioxidants or diet in the treatment of situations arising due to oxidative stress and may have future therapeutic relevance.


Assuntos
Ácido Oleico/metabolismo , Ácido Oleico/farmacologia , Animais , Antioxidantes/farmacologia , Biomarcadores/metabolismo , Cádmio/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Coração/efeitos dos fármacos , Traumatismos Cardíacos/prevenção & controle , Inflamação/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
14.
J Med Chem ; 62(13): 6315-6329, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31246452

RESUMO

Reduction of mitochondrial oxidative stress-mediated diseases is an important pharmaceutical objective in recent biomedical research. In this context, a series of novel pyrrolobenzoxazines (PyBs) framework with enormous diversity (compounds 5a-w) was synthesized by employing a low-temperature greener pathway, and antioxidant property of the synthesized compounds was successfully demonstrated on preclinical model goat heart mitochondria, in vitro. Copper-ascorbate (Cu-As) was utilized as an oxidative stress generator. Out of screened PyBs, the compound possessing -OH and -OMe groups on benzene nucleus along with pyrrolobenzoxazine core moiety (compound 5w) displayed magnificent antioxidant property with a minimum effective dose of 66 µM during the biochemical assessment. The ameliorative effect of synthesized pyrrolobenzoxazine moiety on levels of biomarkers of oxidative stress, antioxidant enzyme, activities of Krebs cycle and respiratory chain enzymes, mitochondrial morphology, and Ca2+ permeability of mitochondrial membrane was investigated in the presence of Cu-As. Furthermore, the binding mode of Cu-As by compound 5w was explored successfully using isothermal titration calorimetry (ITC) analysis.


Assuntos
Benzoxazinas/farmacologia , Sequestradores de Radicais Livres/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Pirróis/farmacologia , Animais , Ácido Ascórbico/farmacologia , Benzoxazinas/síntese química , Biomarcadores/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Cobre/farmacologia , Sequestradores de Radicais Livres/síntese química , Glutationa/metabolismo , Cabras , Peroxidação de Lipídeos/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Membranas Mitocondriais/metabolismo , Carbonilação Proteica/efeitos dos fármacos , Pirróis/síntese química , Superóxido Dismutase/metabolismo
15.
Curr Cancer Drug Targets ; 19(9): 707-715, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30636612

RESUMO

BACKGROUND: Abrus precatorius Linn. (Kunch in Bengali) is widely spread in tropical and sub-tropical regions. It is a typical plant species which is well-known simultaneously as folk medicine and for its toxicity. OBJECTIVE: Phytoceutical investigation of the white variety seeds of Abrus precatorius Linn. METHODS: Traditional extraction, separation, isolation, and purification processes were followed. The structure was elucidated by various spectral analyses and the solid-state structure of this indolealkaloid was determined by X-ray crystallographic analysis. Docking interactions of L-abrine had been studied against ten major proteins, responsible for various types of cancers. In silico studies were done by Schrödinger Maestro, AutoDock4, PyMOL and AutoDock Vina. The protein structures were downloaded from Protein Data Bank. Sulforhodamine B (SRB) colorimetric assay was used for in vitro anticancer evaluation against four human cancer cell lines. RESULTS: An indole-containing unusual amino acid alkaloid had been isolated from the white variety seeds of Abrus precatorius Linn. In silico docking studies demonstrated significant antiproliferative activity against four human cancer cell lines. CONCLUSION: The solid-state zwitterion structure of the indole-containing alkaloid (α-methylamino- ß-indolepropionic acid, L-abrine) has been confirmed for the first time by X-ray crystallography. Highly promising in silico and in vitro results indicate that L-abrine may find its space in future anticancer drug discovery research.


Assuntos
Abrus/química , Alcaloides Indólicos/isolamento & purificação , Alcaloides Indólicos/farmacologia , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Sementes/química , Sobrevivência Celular , Simulação por Computador , Cristalografia por Raios X/métodos , Humanos , Técnicas In Vitro , Alcaloides Indólicos/química , Neoplasias/metabolismo , Neoplasias/patologia , Células Tumorais Cultivadas
16.
Food Chem Toxicol ; 124: 249-264, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30529122

RESUMO

Cadmium (Cd) is one of the most ubiquitous toxic heavy metal in the environment. The present study was conducted to evaluate the protective role of aqueous bark extract of Terminalia arjuna (TA) against Cd induced oxidative damage in hepatic and cardiac tissues as the TA bark extract has folkloric medicinal use in the treatment of various hepatic and cardiac disorders. Male Wistar rats were divided into 4 groups. The control group was treated with normal saline as the vehicle; the second group orally administered with TA (20 mg/kg bw) daily for 15 days; the third group injected with Cd-acetate (0.44 mg/kg bw, s.c.) every alternate day for a period of 15 days; and the fourth group was administered with TA, 60 min prior to Cd treatment. The biomarkers of organ damage were significantly increased in the Cd treated groups. Besides, a significant alteration in the tissue levels of biomarkers of oxidative stress, the activities and the levels of antioxidant enzymes was observed following treatment with Cd. Additionally, some of the enzymes were found to be inhibited uncompetitively by Cd when tested in an in vitro system. Furthermore, evidence gathered from studies on the histological parameters and mitochondrial membrane potential in both the tissues argue in favour of the possible protective role of TA against Cd induced damage. Finally, gas chromatography-mass spectrometry revealed the presence of eight major bioactive phytochemicals in aqueous bark extract of TA having potent free radical scavenging property. The results indicate that the extract could protect hepatic and cardiac tissues against Cd-induced oxidative stress mediated damages through antioxidant mechanism(s).


Assuntos
Antioxidantes/uso terapêutico , Cardiotônicos/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Cardiopatias/prevenção & controle , Extratos Vegetais/uso terapêutico , Terminalia/química , Acetatos , Animais , Antioxidantes/isolamento & purificação , Biomarcadores/metabolismo , Cádmio , Cardiotônicos/isolamento & purificação , Cardiopatias/induzido quimicamente , Fígado/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Casca de Planta/química , Extratos Vegetais/isolamento & purificação , Ratos Wistar
17.
Oncotarget ; 8(23): 37773-37782, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28562328

RESUMO

PURPOSE: In the battle against cancer discovery of new and novel chemotherapeutic agent demands extreme obligation. Development of anticancer compounds with higher potency and reduced side-effects is timely and challenging. EXPERIMENTAL DESIGN: A small series of fourteen diastereomeric ß-lactams (seven pairs) were synthesized through multi-step process exploring [2+2] ketene-imine cycloaddition as the key step. Comparative stereochemical preferences were studied through computational docking and validated by in vitro evaluation. ß-tubulin was considered as possible molecular target and in vitro anticancer evaluation was conducted against SiHa, B16F10, K562 and Chang cell lines. Caspase-3 activation assay and hematoxylin/eosin staining of the cells were also accomplished. RESULTS: Better docking scores of the cis- over the trans-ß-lactams indicated favorable ß-lactam-ß-tubulin interactions in cis-geometry. In vitro (IC50) evaluation confirmed better anticancer activity of the cis-diastereoisomers. Apoptosis-induced cell death was supported by caspase-3 activation study. A cis-ß-lactam [(±)-Cis-3-amino-1-phenyl-4-(p-tolyl) azetidin-2-one, 6C] was found to be more active (in vitro) than the marketed natural drug colchicine against SiHa and B16F10 (six times higher potency) cell lines. Reduced toxicity (compared to colchicine) in Chang cells confirmed better site-selectivity (accordingly less side-effects) of 6C than colchicine. Aside from 6C, most of the reported molecules demonstrated good to strong in vitro anticancer activity against SiHa and B16F10 cancer cell lines. CONCLUSIONS: Stereochemical preferences of the cis-ß-lactams over their trans-counterparts, toward the molecular target ß-tubulin, was confirmed by docking studies and in vitro anticancer evaluation. Apoptosis was identified as the cause of cell death. The lead 6C exhibited higher potency and selectivity than the marketed drug colchicine both in silico as well as in vitro.


Assuntos
Simulação de Acoplamento Molecular/métodos , beta-Lactamas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade , beta-Lactamas/química
18.
Curr Med Chem ; 24(41): 4677-4713, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28322155

RESUMO

BACKGROUND: Bismuth salts-mediated reactions have become a powerful tool for the synthesis of diverse medicinally-significant compounds because of their low-toxicity (non-toxic) and Lewis acidic capacity. In fact, LD50 of bismuth nitrate is lower than table salt. On the other hand, microwave-induced chemical synthesis is considered as a major greener route in modern chemistry. METHODS: A total of 139 publications (including a few authentic web links) have been reviewed mainly to discuss bismuth salts-induced electrophilic aromatic substitution, protection-deprotection chemistry of carbonyl compounds, enamination, oxidation, carbohydrate chemistry, hydrolysis, addition-elimination route, Paal-Knorr reaction, Clauson-kaas synthesis, Michael addition, aza-Michael addition, Hantzsch reaction, Biginelli reaction, Ferrier rearrangement, Pechmann condensation, Diels-Alder and aza-Diels- Alder reactions, as well as effects of microwave irradiation in a wide range of chemical transformations. RESULTS: Bismuth salts-mediated reactions are developed for the synthesis of diverse organic molecules of medicinal significance. Reactions conducted with bismuth salts are environmentally benign, economical, rapid and high yielding. Microwave irradiation has accelerated these reactions significantly. It is believed that bismuth salts released corresponding acids in the media during the reaction. However, a coordination of bismuth salt to the electronegative atom is also observed in the NMR study. Bismuth has much less control (less attractive forces) over anions (for example, halides, nitrate, sulfate and triflates) compared to alkali metals. Therefore, it forms weak bond with electronegative atoms more readily and facilitates the reactions significantly. Many products obtained via bismuth salts-mediated reactions are medicinally active or intermediate for the synthesis of biologically active molecules including antifungal, anti-parasitic, anticancer and antibacterial agents, as well as agents to prevent Leishmaniosis and Chagas' diseases. CONCLUSION: Bismuth salts are able to (i) generate mineral acids in the reaction media and (ii) coordinate with electronegative atoms to facilitate the reaction. When the reagents and the catalyst (bismuth salt) are subjected to microwave irradiation, microwave passes through the (glass) walls of the reaction vessel and heat only the reactants avoiding local overheating at the wall of the vessel. Accordingly, the possibility of side reaction and subsequent by-product formation are reduced abruptly which in turn increases the yield of the desired product. The extreme rapidity with excellent yield of the product can be rationalized as a synergistic effect of the bismuth salts and microwave irradiation.


Assuntos
Bismuto/química , Micro-Ondas , Nitratos/química , Compostos Orgânicos/síntese química , Química Farmacêutica , Compostos Orgânicos/química
19.
Curr Med Chem ; 24(41): 4596-4626, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28240166

RESUMO

BACKGROUND: Heterocyclic compounds are intriguing part of modern drug discovery research. Ecofriendly syntheses of heterocycles, following green techniques, are privileged routes to protect Mother nature. Microwave-assisted synthesis of chemical compounds is considered as a major greener pathway, both in academia and industry. METHODS: A total of 106 publications (including a few authentic web links) have been reviewed mainly to discuss (i) mechanism of microwave irradiation, (ii) abundance of commercial heterocyclic drugs, (iii) various synthetic procedures, and (iv) medicinal activity of the synthesized molecules. RESULTS: This review summarizes the potential application of microwave irradiation (dielectric heating) to synthesize biologically important heterocyclic small molecules in the recent past. A huge number of heterocyclic compounds are present in various natural sources like plant, marine microbe or other organisms and many of them possess unique biological activity. In addition to nature-derived heterocyclic compounds, a large number of synthetic heterocycles are being used as medicines. This review describes the relevant recent examples of microwave irradiation to accomplish various chemical transformations accelerated by a variety of catalysts which include, but not limited to, Lewis acids, other metal containing catalysts, organocatalysts, heterogeneous catalysts, phase-transfer catalysts, solid-supported catalysts, inorganic catalysts (bases, acids and salts) and so on. Although there are an increasing number of reports on application of dielectric heating in various other fields, this review is focused on a large number of new and novel strategies related to synthetic organic chemistry. The discussion is mostly organized by the disease type although some reactions/molecules can certainly be placed in multiple sections. Since green chemistry is an extremely emerging and comparatively new field of research, attempts to stimulate more activities on green medicinal chemistry are provided. Discussion related to the concurrent effect of microwaves, catalysts and/or solvents, supports to constitute expeditious and general route for the syntheses of medicinally important heterocyclic compounds and pharmacophores has also been included. CONCLUSION: The dielectric heating procedure to produce novel medicinally privileged heterocyclic scaffolds/ compounds is extremely promising and challenging. As a result, this green technique has been gaining increasing interest from the pharmaceutical world. A recent update has been presented. While every effort has been made to include all pertinent reports in this field, any omission is unintentional.


Assuntos
Calefação , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Micro-Ondas , Estrutura Molecular
20.
J Mol Model ; 23(3): 85, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28214932

RESUMO

In this work, through a docking analysis of compounds from the ZINC chemical library on human ß-tubulin using high performance computer cluster, we report new polycyclic aromatic compounds that bind with high energy on the colchicine binding site of ß-tubulin, suggesting three new key amino acids. However, molecular dynamic analysis showed low stability in the interaction between ligand and receptor. Results were confirmed experimentally in in vitro and in vivo models that suggest that molecular dynamics simulation is the best option to find new potential ß-tubulin inhibitors. Graphical abstract Bennett's acceptance ratio (BAR) method.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/química , Relação Estrutura-Atividade , Moduladores de Tubulina/química , Tubulina (Proteína)/química , Sítios de Ligação , Colchicina/química , Células HeLa , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Bibliotecas de Moléculas Pequenas , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA