RESUMO
The scavenging of extracellular macromolecules by engulfment can sustain cell growth in a nutrient-depleted environment. Engulfed macromolecules are contained within vacuoles that are targeted for lysosome fusion to initiate degradation and nutrient export. We have shown that vacuoles containing engulfed material undergo mTORC1-dependent fission that redistributes degraded cargo back into the endosomal network. Here we identify the lipid kinase PIKfyve as a regulator of an alternative pathway that distributes engulfed contents in support of intracellular macromolecular synthesis during macropinocytosis, entosis, and phagocytosis. We find that PIKfyve regulates vacuole size in part through its downstream effector, the cationic transporter TRPML1. Furthermore, PIKfyve promotes recovery of nutrients from vacuoles, suggesting a potential link between PIKfyve activity and lysosomal nutrient export. During nutrient depletion, PIKfyve activity protects Ras-mutant cells from starvation-induced cell death and supports their proliferation. These data identify PIKfyve as a critical regulator of vacuole maturation and nutrient recovery during engulfment.
Assuntos
Fosfatidilinositol 3-Quinases/genética , Canais de Potencial de Receptor Transitório/genética , Vacúolos/genética , Animais , Caenorhabditis elegans , Linhagem Celular Tumoral , Endossomos/genética , Endossomos/metabolismo , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fagocitose/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inanição , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Vacúolos/metabolismoRESUMO
The extensive autophagic-lysosomal pathology in Alzheimer disease (AD) brain has revealed a major defect: in the proteolytic clearance of autophagy substrates. Autophagy failure contributes on several levels to AD pathogenesis and has become an important therapeutic target for AD and other neurodegenerative diseases. We recently observed broad therapeutic effects of stimulating autophagic-lysosomal proteolysis in the TgCRND8 mouse model of AD that exhibits defective proteolytic clearance of autophagic substrates, robust intralysosomal amyloid-ß peptide (Aß) accumulation, extracellular ß-amyloid deposition and cognitive deficits. By genetically deleting the lysosomal cysteine protease inhibitor, cystatin B (CstB), to selectively restore depressed cathepsin activities, we substantially cleared Aß, ubiquitinated proteins and other autophagic substrates from autolysosomes/lysosomes and rescued autophagic-lysosomal pathology, as well as reduced total Aß40/42 levels and extracellular amyloid deposition, highlighting the underappreciated importance of the lysosomal system for Aß clearance. Most importantly, lysosomal remediation prevented the marked learning and memory deficits in TgCRND8 mice. Our findings underscore the pathogenic significance of autophagic-lysosomal dysfunction in AD and demonstrate the value of reversing this dysfunction as an innovative therapeautic strategy for AD.
Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Autofagia , Lisossomos/metabolismo , Processamento de Proteína Pós-Traducional , Doença de Alzheimer/fisiopatologia , Amiloide/metabolismo , Animais , Cistatina B/metabolismo , Modelos Animais de Doenças , Deleção de Genes , Memória , Camundongos , Camundongos TransgênicosRESUMO
Autophagy, a major degradative pathway for proteins and organelles, is essential for survival of mature neurons. Extensive autophagic-lysosomal pathology in Alzheimer's disease brain contributes to Alzheimer's disease pathogenesis, although the underlying mechanisms are not well understood. Here, we identified and characterized marked intraneuronal amyloid-ß peptide/amyloid and lysosomal system pathology in the Alzheimer's disease mouse model TgCRND8 similar to that previously described in Alzheimer's disease brains. We further establish that the basis for these pathologies involves defective proteolytic clearance of neuronal autophagic substrates including amyloid-ß peptide. To establish the pathogenic significance of these abnormalities, we enhanced lysosomal cathepsin activities and rates of autophagic protein turnover in TgCRND8 mice by genetically deleting cystatin B, an endogenous inhibitor of lysosomal cysteine proteases. Cystatin B deletion rescued autophagic-lysosomal pathology, reduced abnormal accumulations of amyloid-ß peptide, ubiquitinated proteins and other autophagic substrates within autolysosomes/lysosomes and reduced intraneuronal amyloid-ß peptide. The amelioration of lysosomal function in TgCRND8 markedly decreased extracellular amyloid deposition and total brain amyloid-ß peptide 40 and 42 levels, and prevented the development of deficits of learning and memory in fear conditioning and olfactory habituation tests. Our findings support the pathogenic significance of autophagic-lysosomal dysfunction in Alzheimer's disease and indicate the potential value of restoring normal autophagy as an innovative therapeutic strategy for Alzheimer's disease.
Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Autofagia/fisiologia , Encéfalo/patologia , Transtornos da Memória/fisiopatologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/metabolismo , Análise de Variância , Animais , Western Blotting , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Condicionamento Psicológico , Ensaio de Imunoadsorção Enzimática , Medo , Habituação Psicofisiológica , Imuno-Histoquímica , Lisossomos/metabolismo , Lisossomos/patologia , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologiaRESUMO
Cystatin C (CysC) expression in the brain is elevated in human patients with epilepsy, in animal models of neurodegenerative conditions, and in response to injury, but whether up-regulated CysC expression is a manifestation of neurodegeneration or a cellular repair response is not understood. This study demonstrates that human CysC is neuroprotective in cultures exposed to cytotoxic challenges, including nutritional-deprivation, colchicine, staurosporine, and oxidative stress. While CysC is a cysteine protease inhibitor, cathepsin B inhibition was not required for the neuroprotective action of CysC. Cells responded to CysC by inducing fully functional autophagy via the mTOR pathway, leading to enhanced proteolytic clearance of autophagy substrates by lysosomes. Neuroprotective effects of CysC were prevented by inhibiting autophagy with beclin 1 siRNA or 3-methyladenine. Our findings show that CysC plays a protective role under conditions of neuronal challenge by inducing autophagy via mTOR inhibition and are consistent with CysC being neuroprotective in neurodegenerative diseases. Thus, modulation of CysC expression has therapeutic implications for stroke, Alzheimer's disease, and other neurodegenerative disorders.