Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2813: 137-144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38888776

RESUMO

Air-liquid interface (ALI) airway culture models serve as a powerful tool to emulate the characteristic features of the respiratory tract in vitro. These models are particularly valuable for studying emerging respiratory viral and bacterial infections. Here, we describe an optimized protocol to obtain the ALI airway culture models using normal human bronchial epithelial cells (NHBECs). The protocol outlined below enables the generation of differentiated mucociliary airway epithelial cultures by day 28 following exposure to air.


Assuntos
Técnicas de Cultura de Células , Células Epiteliais , Humanos , Técnicas de Cultura de Células/métodos , Células Epiteliais/microbiologia , Células Epiteliais/virologia , Células Epiteliais/citologia , Brônquios/citologia , Mucosa Respiratória/citologia , Mucosa Respiratória/microbiologia , Mucosa Respiratória/virologia , Ar , Células Cultivadas , Doenças Transmissíveis/microbiologia
2.
Trends Immunol ; 45(3): 188-197, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38453577

RESUMO

Molecular studies in bats have led to the discovery of antiviral adaptations that may explain how some bat species have evolved enhanced immune tolerance towards viruses. Accumulating data suggest that some bat species have also evolved remarkable features of longevity and low rates of cancer. Furthermore, recent research strongly suggests that discovering immune adaptations in bat models can be translated to develop immune modulators and recognize alternate therapeutic strategies for diseases affecting humans. We posit that research in bat immunology will lead to discoveries that can potentially be translated to improve health outcomes in humans.


Assuntos
Quirópteros , Vírus , Animais , Humanos
3.
Redox Biol ; 58: 102508, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36334378

RESUMO

RATIONALE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 pneumonia. We hypothesize that SARS-CoV-2 causes alveolar injury and hypoxemia by damaging mitochondria in airway epithelial cells (AEC) and pulmonary artery smooth muscle cells (PASMC), triggering apoptosis and bioenergetic impairment, and impairing hypoxic pulmonary vasoconstriction (HPV), respectively. OBJECTIVES: We examined the effects of: A) human betacoronaviruses, SARS-CoV-2 and HCoV-OC43, and individual SARS-CoV-2 proteins on apoptosis, mitochondrial fission, and bioenergetics in AEC; and B) SARS-CoV-2 proteins and mouse hepatitis virus (MHV-1) infection on HPV. METHODS: We used transcriptomic data to identify temporal changes in mitochondrial-relevant gene ontology (GO) pathways post-SARS-CoV-2 infection. We also transduced AECs with SARS-CoV-2 proteins (M, Nsp7 or Nsp9) and determined effects on mitochondrial permeability transition pore (mPTP) activity, relative membrane potential, apoptosis, mitochondrial fission, and oxygen consumption rates (OCR). In human PASMC, we assessed the effects of SARS-CoV-2 proteins on hypoxic increases in cytosolic calcium, an HPV proxy. In MHV-1 pneumonia, we assessed HPV via cardiac catheterization and apoptosis using the TUNEL assay. RESULTS: SARS-CoV-2 regulated mitochondrial apoptosis, mitochondrial membrane permeabilization and electron transport chain (ETC) GO pathways within 2 hours of infection. SARS-CoV-2 downregulated ETC Complex I and ATP synthase genes, and upregulated apoptosis-inducing genes. SARS-CoV-2 and HCoV-OC43 upregulated and activated dynamin-related protein 1 (Drp1) and increased mitochondrial fission. SARS-CoV-2 and transduced SARS-CoV-2 proteins increased apoptosis inducing factor (AIF) expression and activated caspase 7, resulting in apoptosis. Coronaviruses also reduced OCR, decreased ETC Complex I activity and lowered ATP levels in AEC. M protein transduction also increased mPTP opening. In human PASMC, M and Nsp9 proteins inhibited HPV. In MHV-1 pneumonia, infected AEC displayed apoptosis and HPV was suppressed. BAY K8644, a calcium channel agonist, increased HPV and improved SpO2. CONCLUSIONS: Coronaviruses, including SARS-CoV-2, cause AEC apoptosis, mitochondrial fission, and bioenergetic impairment. SARS-CoV-2 also suppresses HPV by targeting mitochondria. This mitochondriopathy is replicated by transduction with SARS-CoV-2 proteins, indicating a mechanistic role for viral-host mitochondrial protein interactions. Mitochondriopathy is a conserved feature of coronaviral pneumonia that may exacerbate hypoxemia and constitutes a therapeutic target.


Assuntos
COVID-19 , Infecções por Papillomavirus , Animais , Camundongos , Humanos , SARS-CoV-2 , Hipóxia/complicações , Poro de Transição de Permeabilidade Mitocondrial , Trifosfato de Adenosina
4.
Med ; 3(6): 422-432.e3, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35437520

RESUMO

Background: SARS-CoV-2 Omicron variant of concern (VOC) has evolved multiple mutations within the spike protein, raising concerns of increased antibody evasion. In this study, we assessed the neutralization potential of COVID-19 convalescent sera and sera from vaccinated individuals against ancestral SARS-CoV-2 and VOCs. Methods: The neutralizing activity of sera from 65 coronavirus disease (COVID-19) vaccine recipients and convalescent individuals against clinical isolates of ancestral SARS-CoV-2 and Beta, Delta, and Omicron VOCs was assessed using a micro-neutralization assay. Findings: Convalescent sera from unvaccinated individuals infected by the ancestral virus demonstrated reduced neutralization against Beta and Omicron VOCs. Sera from individuals that received three doses of the Pfizer or Moderna vaccines demonstrated reduced neutralization of the Omicron variant relative to ancestral SARS-CoV-2. Sera from individuals that were naturally infected with ancestral SARS-CoV-2 and subsequently received two doses of the Pfizer vaccine induced significantly higher neutralizing antibody levels against ancestral virus and all VOCs. Infection alone, either with ancestral SARS-CoV-2 or the Delta variant, was not sufficient to induce high neutralizing antibody titers against Omicron. Conclusions: In summary, we demonstrate that convalescent and vaccinated sera display varying levels of SARS-CoV-2 VOC neutralization. Data from this study will inform booster vaccination strategies against SARS-CoV-2 VOCs. Funding: This research was funded by the Canadian Institutes of Health Research (CIHR). VIDO receives operational funding from the Government of Saskatchewan through Innovation Saskatchewan and the Ministry of Agriculture and from the Canada Foundation for Innovation through the Major Science Initiatives for its CL3 facility.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , COVID-19/terapia , Humanos , Imunização Passiva , Glicoproteínas de Membrana/genética , Testes de Neutralização , SARS-CoV-2/genética , Saskatchewan , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral/genética , Soroterapia para COVID-19
5.
Cell Rep ; 38(10): 110502, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35235831

RESUMO

Since the vast majority of species solely rely on innate immunity for host defense, it stands to reason that a critical evolutionary trait like immunological memory evolved in this primitive branch of our immune system. There is ample evidence that vaccines such as bacillus Calmette-Guérin (BCG) induce protective innate immune memory responses (trained immunity) against heterologous pathogens. Here we show that while BCG vaccination significantly reduces morbidity and mortality against influenza A virus (IAV), it fails to provide protection against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). In contrast to IAV, SARS-CoV-2 infection leads to unique pulmonary vasculature damage facilitating viral dissemination to other organs, including the bone marrow (BM), a central site for BCG-mediated trained immunity. Finally, monocytes from BCG-vaccinated individuals mount an efficient cytokine response to IAV infection, while this response is minimal following SARS-CoV-2. Collectively, our data suggest that the protective capacity of BCG vaccination is contingent on viral pathogenesis and tissue tropism.


Assuntos
COVID-19 , Vírus da Influenza A , Vacina BCG , COVID-19/prevenção & controle , Humanos , Imunidade Inata , SARS-CoV-2 , Vacinação
6.
Cell Biosci ; 11(1): 202, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34879865

RESUMO

BACKGROUND: The ongoing COVID-19 pandemic has resulted in 185 million recorded cases and over 4 million deaths worldwide. Several COVID-19 vaccines have been approved for emergency use in humans and are being used in many countries. However, all the approved vaccines are administered by intramuscular injection and this may not prevent upper airway infection or viral transmission. RESULTS: Here, we describe a novel, intranasally delivered COVID-19 vaccine based on a helper-dependent adenoviral (HD-Ad) vector. The vaccine (HD-Ad_RBD) produces a soluble secreted form of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein and we show it induced robust mucosal and systemic immunity. Moreover, intranasal immunization of K18-hACE2 mice with HD-Ad_RBD using a prime-boost regimen, resulted in complete protection of the upper respiratory tract against SARS-CoV-2 infection. CONCLUSION: Our approaches provide a powerful platform for constructing highly effective vaccines targeting SARS-CoV-2 and its emerging variants.

7.
Viruses ; 14(1)2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-35062264

RESUMO

Medicinal chemistry optimization of a previously described stilbene inhibitor of HIV-1, 5350150 (2-(2-(5-nitro-2-thienyl)vinyl)quinoline), led to the identification of the thiazole-5-carboxamide derivative (GPS491), which retained potent anti-HIV-1 activity with reduced toxicity. In this report, we demonstrate that the block of HIV-1 replication by GPS491 is accompanied by a drastic inhibition of viral gene expression (IC50 ~ 0.25 µM), and alterations in the production of unspliced, singly spliced, and multiply spliced HIV-1 RNAs. GPS491 also inhibited the replication of adenovirus and multiple coronaviruses. Low µM doses of GPS491 reduced adenovirus infectious yield ~1000 fold, altered virus early gene expression/viral E1A RNA processing, blocked viral DNA amplification, and inhibited late (hexon) gene expression. Loss of replication of multiple coronaviruses (229E, OC43, SARS-CoV2) upon GPS491 addition was associated with the inhibition of viral structural protein expression and the formation of virus particles. Consistent with the observed changes in viral RNA processing, GPS491 treatment induced selective alterations in the accumulation/phosphorylation/function of splicing regulatory SR proteins. Our study establishes that a compound that impacts the activity of cellular factors involved in RNA processing can prevent the replication of several viruses with minimal effect on cell viability.


Assuntos
Adenoviridae/efeitos dos fármacos , Antivirais/farmacologia , Coronavirus/efeitos dos fármacos , HIV-1/efeitos dos fármacos , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Tiazóis/farmacologia , Replicação Viral/efeitos dos fármacos , Adenoviridae/fisiologia , Antivirais/química , Linhagem Celular , Coronavirus/classificação , Coronavirus/fisiologia , Expressão Gênica/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Fatores de Processamento de RNA/metabolismo , RNA Viral/metabolismo , Tiazóis/química
8.
Sci Rep ; 10(1): 7257, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350357

RESUMO

Coronaviruses that cause severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) are speculated to have originated in bats. The mechanisms by which these viruses are maintained in individuals or populations of reservoir bats remain an enigma. Mathematical models have predicted long-term persistent infection with low levels of periodic shedding as a likely route for virus maintenance and spillover from bats. In this study, we tested the hypothesis that bat cells and MERS coronavirus (CoV) can co-exist in vitro. To test our hypothesis, we established a long-term coronavirus infection model of bat cells that are persistently infected with MERS-CoV. We infected cells from Eptesicus fuscus with MERS-CoV and maintained them in culture for at least 126 days. We characterized the persistently infected cells by detecting virus particles, protein and transcripts. Basal levels of type I interferon in the long-term infected bat cells were higher, relative to uninfected cells, and disrupting the interferon response in persistently infected bat cells increased virus replication. By sequencing the whole genome of MERS-CoV from persistently infected bat cells, we identified that bat cells repeatedly selected for viral variants that contained mutations in the viral open reading frame 5 (ORF5) protein. Furthermore, bat cells that were persistently infected with ΔORF5 MERS-CoV were resistant to superinfection by wildtype virus, likely due to reduced levels of the virus receptor, dipeptidyl peptidase 4 (DPP4) and higher basal levels of interferon in these cells. In summary, our study provides evidence for a model of coronavirus persistence in bats, along with the establishment of a unique persistently infected cell culture model to study MERS-CoV-bat interactions.


Assuntos
Quirópteros/virologia , Infecções por Coronavirus/virologia , Eulipotyphla/virologia , Fibroblastos/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Fases de Leitura Aberta/genética , Mutação Puntual , Animais , Quirópteros/anatomia & histologia , Chlorocebus aethiops , Proteínas do Nucleocapsídeo de Coronavírus , Dipeptidil Peptidase 4/metabolismo , Eulipotyphla/anatomia & histologia , Fibroblastos/metabolismo , Genoma Viral/genética , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Rim/citologia , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas do Nucleocapsídeo/genética , Receptores Virais/metabolismo , Transfecção , Células Vero , Replicação Viral/genética , Sequenciamento Completo do Genoma
9.
Sci Rep ; 7(1): 2232, 2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28533548

RESUMO

In recent years viruses similar to those that appear to cause no overt disease in bats have spilled-over to humans and other species causing serious disease. Since pathology in such diseases is often attributed to an over-active inflammatory response, we tested the hypothesis that bat cells respond to stimulation of their receptors for viral ligands with a strong antiviral response, but unlike in human cells, the inflammatory response is not overtly activated. We compared the response of human and bat cells to poly(I:C), a viral double-stranded RNA surrogate. We measured transcripts for several inflammatory, interferon and interferon stimulated genes using quantitative real-time PCR and observed that human and bat cells both, when stimulated with poly(I:C), contained higher levels of transcripts for interferon beta than unstimulated cells. In contrast, only human cells expressed robust amount of RNA for TNFα, a cell signaling protein involved in systemic inflammation. We examined the bat TNFα promoter and found a potential repressor (c-Rel) binding motif. We demonstrated that c-Rel binds to the putative c-Rel motif in the promoter and knocking down c-Rel transcripts significantly increased basal levels of TNFα transcripts. Our results suggest bats may have a unique mechanism to suppress inflammatory pathology.


Assuntos
Quirópteros/genética , Expressão Gênica , Predisposição Genética para Doença , Inflamação/genética , Tecido Adiposo Marrom/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Quirópteros/metabolismo , Interferon beta/metabolismo , Modelos Biológicos , Poli I-C/farmacologia , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas c-rel/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Receptor 3 Toll-Like/metabolismo
10.
J Virol Methods ; 237: 166-173, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27639955

RESUMO

It is speculated that bats are important reservoir hosts for numerous viruses, with 27 viral families reportedly detected in bats. Majority of these viruses have not been isolated and there is little information regarding their biology in bats. Establishing a well-characterized bat cell line supporting the replication of bat-borne viruses would facilitate the analysis of virus-host interactions in an in vitro model. Currently, few bat cell lines have been developed and only Tb1-Lu, derived from Tadarida brasiliensis is commercially available. Here we describe a method to establish and immortalize big brown bat (Eptesicus fuscus) kidney (Efk3) cells using the Myotis polyomavirus T-antigen. Subclones of this cell line expressed both epithelial and fibroblast markers to varying extents. Cell clones expressed interferon beta in response to poly(I:C) stimulation and supported the replication of four different viruses, namely, vesicular stomatitis virus (VSV), porcine epidemic diarrhea coronavirus (PED-CoV), Middle-East respiratory syndrome coronavirus (MERS-CoV) and herpes simplex virus (HSV). To our knowledge, this is the first bat cell line from a northern latitude insectivorous bat developed using a novel technology. The cell line has the potential to be used for isolation of bat viruses and for studying virus-bat interactions in culture.


Assuntos
Antígenos Transformantes de Poliomavirus , Linhagem Celular , Transformação Celular Viral , Quirópteros , Rim , Polyomavirus/fisiologia , Animais , Técnicas de Cultura de Células , Células Epiteliais/virologia , Fibroblastos/virologia , Queratinas/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/crescimento & desenvolvimento , Polyomavirus/crescimento & desenvolvimento , Vírus da Diarreia Epidêmica Suína/crescimento & desenvolvimento , Simplexvirus/crescimento & desenvolvimento , Vesiculovirus/crescimento & desenvolvimento , Vimentina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA