Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Am J Respir Cell Mol Biol ; 70(6): 507-518, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38512807

RESUMO

Airway remodeling is a cardinal feature of asthma, associated with increased airway smooth muscle (ASM) cell mass and upregulation of extracellular matrix deposition. Exaggerated ASM cell migration contributes to excessive ASM mass. Previously, we demonstrated the alleviating role of Kp (kisspeptin) receptor (KISS1R) activation by Kp-10 in mitogen (PDGF [platelet-derived growth factor])-induced human ASM cell proliferation in vitro and airway remodeling in vivo in a mouse model of asthma. Here, we examined the mechanisms by which KISS1R activation regulates mitogen-induced ASM cell migration. KISS1R activation using Kp-10 significantly inhibited PDGF-induced ASM cell migration, further confirmed using KISS1R shRNA. Furthermore, KISS1R activation modulated F/G actin dynamics and the expression of promigration proteins like CDC42 (cell division control protein 42) and cofilin. Mechanistically, we observed reduced ASM RhoA-GTPAse with KISS1R activation. The antimigratory effect of KISS1R was abolished by PKA (protein kinase A)-inhibitory peptide. Conversely, KISS1R activation significantly increased cAMP and phosphorylation of CREB (cAMP-response element binding protein) in PDGF-exposed ASM cells. Overall, these results highlight the alleviating properties of Kp-10 in the context of airway remodeling.


Assuntos
Movimento Celular , Kisspeptinas , Miócitos de Músculo Liso , Fator de Crescimento Derivado de Plaquetas , Receptores de Kisspeptina-1 , Transdução de Sinais , Proteína rhoA de Ligação ao GTP , Humanos , Movimento Celular/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Kisspeptinas/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Receptores de Kisspeptina-1/metabolismo , Receptores de Kisspeptina-1/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Remodelação das Vias Aéreas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Cultivadas , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Proliferação de Células
2.
Sci Rep ; 13(1): 10878, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407661

RESUMO

The real-world evidence data from multiple sources which includes information on patient health status and medical behavior in routine clinical setup can give deeper insights into drugs 'safety and efficacy. The RWE-based analysis in this study revealed a statistically significant link between biologics usage and hepatotoxicity in patients. To the best of our knowledge, this study is the first to conduct a large-scale multi-cohort analysis on the hepatotoxic profiles of biologics. Biologics are among the most prescribed medicines for several chronic inflammatory diseases. These agents target critical pathogenic pathways, but they may also have serious side effects. It is important to analyze whether biologics agents are an added concern or therapeutic opportunity. Real-world evidence (RWE) data were extracted for patients using biologics to monitor the safety and effectiveness of the biologics. All six biologics included in this analysis-are mostly highly prescribed biologics. The aim of the study was to assess the hepatotoxic profiles of subjects using different biologics. We evaluated the safety of current treatment regimens for patients in a large real-world cohort from multiple health care centers. Total number of eligible patients retrieved from the database is 38,112,285. Of these 38 million patients, 2.3 million take biologics. The primary objective was to assess the potential adverse hepatotoxic effects of the six biologics; adalimumab, trastuzumab, prevnar13, pegfilgrastim, interferon-beta1a and insulin glargine across different indications like diabetes mellitus, encounter for immunization, malignant neoplasm of breast, multiple sclerosis, malignant neoplasm of kidney, aplastic anaemias, radiation sickness, Crohn's disease, psoriasis, rheumatoid arthritis, spondylopathies. Data from patients using the six most-used biologics-adalimumab, trastuzumab, prevnar13, pegfilgrastim, interferon-beta1a and insulin glargine were retrieved from a global research network covering 250 million patients' data from 19 countries, and assigned to the cohorts 1 and 2, respectively. The cohorts were propensity score matched for age and sex. After defining the primary outcome as "hepatotoxicity" (endpoint defined as ICD-10 code: K71 (hepatotoxic liver disease), a Kaplan-Meier survival analysis was performed, and risk ratios (RR), odds ratios (OR), and hazard ratios (HR) were determined. A total number of 2,312,655 subjects were eligible who take biologics, and after matching total cohorts accounted for 2,303,445. We have considered the clinical data as a 1:1 matched-study design, using propensity score-matched sub-cohorts to better control for confounding associations that might stem from different distributions of age and gender between the whole dataset and the subset of patients. We discovered evidence supporting the hepatotoxic-causing effect of biologic drugs: (i) all biologics considered together had an OR of 1.9 (95% CI, 1.67-2.35), with (ii) Adalimumab 1.9 (95% CI, 1.72-2.20), Trastuzumab 1.7 (95% CI, 1.2-2.3), Prevnar13 2.3 (95% CI, 2.16-2.60), Pegfilgrastim 2.3 (95% CI, 2.0-2.50), Interferon-Beta1a 1.7 (95% CI, 1.18-2.51), and Insulin glargine 1.9 (95% CI, 1.8-1.99). Our findings indicate that clinicians should consider evaluating hepatic profiles of patients undergoing treatment with biologic drugs and counsel them regarding the risk of developing hepatic injury. Strengths of the study includes a large sample size and robust statistical techniques. Limitations of this study include lack of detailed information regarding clinical severity. Major biologics are associated with hepatotoxicity. We discovered evidence supporting the hepatotoxicity-causing effects of biologics: all biologics considered together had an OR of 1.9 (95% CI, 1.67-2.35).


Assuntos
Anticorpos Monoclonais , Produtos Biológicos , Humanos , Adalimumab/efeitos adversos , Anticorpos Monoclonais/uso terapêutico , Produtos Biológicos/efeitos adversos , Insulina Glargina , Trastuzumab , Interferons
3.
Front Cardiovasc Med ; 10: 1186679, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332576

RESUMO

Cancer survivors undergone treatment face an increased risk of developing atherosclerotic cardiovascular disease (CVD), yet the underlying mechanisms remain elusive. Recent studies have revealed that chemotherapy can drive senescent cancer cells to acquire a proliferative phenotype known as senescence-associated stemness (SAS). These SAS cells exhibit enhanced growth and resistance to cancer treatment, thereby contributing to disease progression. Endothelial cell (EC) senescence has been implicated in atherosclerosis and cancer, including among cancer survivors. Treatment modalities for cancer can induce EC senescence, leading to the development of SAS phenotype and subsequent atherosclerosis in cancer survivors. Consequently, targeting senescent ECs displaying the SAS phenotype hold promise as a therapeutic approach for managing atherosclerotic CVD in this population. This review aims to provide a mechanistic understanding of SAS induction in ECs and its contribution to atherosclerosis among cancer survivors. We delve into the mechanisms underlying EC senescence in response to disturbed flow and ionizing radiation, which play pivotal role in atherosclerosis and cancer. Key pathways, including p90RSK/TERF2IP, TGFßR1/SMAD, and BH4 signaling are explored as potential targets for cancer treatment. By comprehending the similarities and distinctions between different types of senescence and the associated pathways, we can pave the way for targeted interventions aim at enhancing the cardiovascular health of this vulnerable population. The insights gained from this review may facilitate the development of novel therapeutic strategies for managing atherosclerotic CVD in cancer survivors.

4.
Am J Pathol ; 193(10): 1400-1414, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37355037

RESUMO

As an organ critically important for targeting and clearing viruses, bacteria, and other foreign material, the liver operates via immune-tolerant, anti-inflammatory mechanisms indispensable to the immune response. Stress and stress-induced factors disrupt the homeostatic balance in the liver, inflicting tissue damage, injury, and remodeling. These factors include oxidative stress (OS) induced by viral infections, environmental toxins, drugs, alcohol, and diet. A recurrent theme seen among stressors common to multiple liver diseases is the induction of mitochondrial dysfunction, increased reactive oxygen species expression, and depletion of ATP. Inflammatory signaling additionally exacerbates the condition, generating a proinflammatory, immunosuppressive microenvironment and activation of apoptotic and necrotic mechanisms that disrupt the integrity of liver morphology. These pathways initiate signaling pathways that significantly contribute to the development of liver steatosis, inflammation, fibrosis, cirrhosis, and liver cancers. In addition, hypoxia and OS directly enhance angiogenesis and lymphangiogenesis in chronic liver diseases. Late-stage consequences of these conditions often narrow the outcomes for liver transplantation or result in death. This review provides a detailed perspective on various stress-induced factors and the specific focus on role of OS in different liver diseases with special emphasis on different molecular mechanisms. It also highlights how resultant changes in the liver vasculature correlate with pathogenesis.


Assuntos
Fígado Gorduroso , Neoplasias Hepáticas , Humanos , Estresse Oxidativo , Fígado/patologia , Cirrose Hepática/patologia , Fígado Gorduroso/patologia , Neoplasias Hepáticas/patologia , Microambiente Tumoral
5.
Cells ; 12(4)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36831193

RESUMO

Conjugated bile acids (BA) are significantly elevated in several liver pathologies and in the metastatic lymph node (LN). However, the effects of BAs on pathological lymphangiogenesis remains unknown. The current study explores the effects of BAs on lymphangiogenesis. BA levels were elevated in the LN and serum of Mdr2-/- mice (model of sclerosing cholangitis) compared to control mice. Liver and LN tissue sections showed a clear expansion of the lymphatic network in Mdr2-/- mice, indicating activated lymphangiogenic pathways. Human lymphatic endothelial cells (LECs) expressed BA receptors and a direct treatment with conjugated BAs enhanced invasion, migration, and tube formation. BAs also altered the LEC metabolism and upregulated key metabolic genes. Further, BAs induced the production of reactive oxygen species (ROS), that in turn phosphorylated the redox-sensitive kinase p90RSK, an essential regulator of endothelial cell dysfunction and oxidative stress. Activated p90RSK increased the SUMOylation of the Prox1 transcription factor and enhanced VEGFR3 expression and 3-D LEC invasion. BA-induced ROS in the LECs, which led to increased levels of Yes-associated protein (YAP), a lymphangiogenesis regulator. The suppression of cellular YAP inhibited BA-induced VEGFR3 upregulation and lymphangiogenic mechanism. Overall, our data shows the expansion of the lymphatic network in presclerotic liver disease and establishes a novel mechanism whereby BAs promote lymphangiogenesis.


Assuntos
Linfangiogênese , Fator A de Crescimento do Endotélio Vascular , Camundongos , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Esteroides/metabolismo , Ácidos e Sais Biliares/metabolismo
6.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769195

RESUMO

Cellular senescence-the irreversible cell cycle arrest driven by a variety of mechanisms and, more specifically, the senescence-associated secretory phenotype (SASP)-is an important area of research in the context of different age-related diseases, such as cardiovascular disease and cancer. SASP factors play both beneficial and detrimental roles in age-related disease progression depending on the source of the SASPs, the target cells, and the microenvironment. The impact of senescence and the SASP on different cell types, the immune system, and the vascular system has been widely discussed. However, the impact of replicative or stress-induced senescence on lymphatic biology and pathological lymphangiogenesis remains underexplored. The lymphatic system plays a crucial role in the maintenance of body fluid homeostasis and immune surveillance. The perturbation of lymphatic function can hamper normal physiological function. Natural aging or stress-induced premature aging influences the lymphatic vessel structure and function, which significantly affect the role of lymphatics in tumor dissemination and metastasis. In this review, we focus on the role of senescence on lymphatic pathobiology, its impact on cancer, and potential therapeutic interventions to manipulate the aged or senescent lymphatic system for disease management.


Assuntos
Senescência Celular , Microambiente Tumoral , Humanos , Metástase Linfática , Senescência Celular/genética , Pontos de Checagem do Ciclo Celular
7.
Nucleic Acids Res ; 51(D1): D654-D659, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36399452

RESUMO

Natural products (NPs) are single chemical compounds, substances or mixtures produced by a living organism - found in nature. Evolutionarily, NPs have been used as healing agents since thousands of years and still today continue to be the most important source of new potential therapeutic preparations. Natural products have played a key role in modern drug discovery for several diseases. Furthermore, following consumers' increasing demand for natural food ingredients, many efforts have been made to discover natural low-calorie sweeteners in recent years. SuperNatural 3.0 is a freely available database of natural products and derivatives. The updated version contains 449 058 natural compounds along with their structural and physicochemical information. Additionally, information on pathways, mechanism of action, toxicity, vendor information if available, drug-like chemical space prediction for several diseases as antiviral, antibacterial, antimalarial, anticancer, and target specific cells like the central nervous system (CNS) are also provided for the natural compounds. The updated version of the database also provides a valuable pool of natural compounds in which potential highly sweet compounds are expected to be found. The possible taste profile of the natural compounds was predicted using our published VirtualTaste models. The SuperNatural 3.0 database is freely available via http://bioinf-applied.charite.de/supernatural_3, without any login or registration.


Assuntos
Produtos Biológicos , Produtos Biológicos/química , Bases de Dados Factuais , Descoberta de Drogas , Paladar , Antibacterianos
8.
Bioorg Med Chem ; 74: 117044, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36244233

RESUMO

The protease enzyme, matrix metalloproteinase-2 (MMP-2) has been a target of choice for the drug development due to its multi-façade involvement in numerous diseased conditions including cancer. To find a selective MMP-2 inhibitor several computational strategies are employed in its design and discovery. In these strategies, protein structure of MMP-2 is an inevitable part to formulate effective structure-based drug design (SBDD) of selective MMP-2 inhibitors. In the present communication, several crystal structures of MMP-2 have been analyzed with different statistical parameters and their implementations in SBDD of inhibitors are scrutinized. In addition, binding mode analyses of various classes of inhibitors are discussed to pinpoint the effective design of selective inhibitors by maximizing its interaction with the MMP-2 enzyme binding site. This may provide a crucial insight for exploring the numerous possibilities for SBDD of MMP-2 inhibitors to accelerate anticancer drug discovery efforts.


Assuntos
Metaloproteinase 2 da Matriz , Simulação de Dinâmica Molecular , Metaloproteinase 2 da Matriz/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Metaloproteinases de Matriz/química , Desenho de Fármacos , Sítios de Ligação
9.
Microcirculation ; 29(6-7): e12780, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35972391

RESUMO

The role of the lymphatic system in maintaining tissue homeostasis and a number of different pathophysiological conditions has been well established. The complex and delicate structure of the lymphatics along with the limitations of conventional imaging techniques make lymphatic imaging particularly difficult. Thus, in-depth high-resolution imaging of lymphatic system is key to understanding the progression of lymphatic diseases and cancer metastases and would greatly benefit clinical decisions. In recent years, the advancement of imaging technologies and development of new tracers suitable for clinical applications has enabled imaging of the lymphatic system in both clinical and pre-clinical settings. In this current review, we have highlighted the advantages and disadvantages of different modern techniques such as near infra-red spectroscopy (NIRS), positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI) and fluorescence optical imaging, that has significantly impacted research in this field and has led to in-depth insights into progression of pathological states. This review also highlights the use of current imaging technologies, and tracers specific for immune cell markers to identify and track the immune cells in the lymphatic system that would help understand disease progression and remission in immune therapy regimen.


Assuntos
Sistema Linfático , Vasos Linfáticos , Sistema Linfático/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X/métodos , Vasos Linfáticos/diagnóstico por imagem
10.
Artigo em Inglês | MEDLINE | ID: mdl-35801078

RESUMO

Numerous studies have revealed the critical role of premature senescence induced by various cancer treatment modalities in the pathogenesis of aging-related diseases. Senescence-associated secretory phenotype (SASP) can be induced by telomere dysfunction. Telomeric DNA damage response induced by some cancer treatments can persist for months, possibly accounting for long-term sequelae of cancer treatments. Telomeric DNA damage-induced mitochondrial dysfunction and increased reactive oxygen species production are hallmarks of premature senescence. Recently, we reported that the nucleus-mitochondria positive feedback loop formed by p90 ribosomal S6 kinase (p90RSK) and phosphorylation of S496 on ERK5 (a unique member of the mitogen-activated protein kinase family that is not only a kinase but also a transcriptional co-activator) were vital signaling events that played crucial roles in linking mitochondrial dysfunction, nuclear telomere dysfunction, persistent SASP induction, and atherosclerosis. In this review, we will discuss the role of NAD+ depletion in instigating SASP and its downstream signaling and regulatory mechanisms that lead to the premature onset of atherosclerotic cardiovascular diseases in cancer survivors.

11.
Respir Res ; 23(1): 126, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35578269

RESUMO

BACKGROUND: Corticosteroids remain a key therapy for treating children with asthma. Patients with severe asthma are insensitive, resistant, or refractory to corticosteroids and have poorly controlled symptoms that involve airway inflammation, airflow obstruction, and frequent exacerbations. While the pathways that mediate corticosteroid insensitivity in asthma remain poorly defined, recent studies suggest that enhanced Th1 pathways, mediated by TNFα and IFNγ, may play a role. We previously reported that the combined effects of TNFα and IFNγ promote corticosteroid insensitivity in developing human airway smooth muscle (ASM). METHODS: To further understand the effects of TNFα and IFNγ on corticosteroid sensitivity in the context of neonatal and pediatric asthma, we performed RNA sequencing (RNA-seq) on human pediatric ASM treated with fluticasone propionate (FP), TNFα, and/or IFNγ. RESULTS: We found that TNFα had a greater effect on gene expression (~ 1000 differentially expressed genes) than IFNγ (~ 500 differentially expressed genes). Pathway and transcription factor analyses revealed enrichment of several pro-inflammatory responses and signaling pathways. Interestingly, treatment with TNFα and IFNγ augmented gene expression with more than 4000 differentially expressed genes. Effects of TNFα and IFNγ enhanced several pro-inflammatory genes and pathways related to ASM and its contributions to asthma pathogenesis, which persisted in the presence of corticosteroids. Co-expression analysis revealed several gene networks related to TNFα- and IFNγ-mediated signaling, pro-inflammatory mediator production, and smooth muscle contractility. Many of the co-expression network hubs were associated with genes that are insensitive to corticosteroids. CONCLUSIONS: Together, these novel studies show the combined effects of TNFα and IFNγ on pediatric ASM and implicate Th1-associated cytokines in promoting ASM inflammation and hypercontractility in severe asthma.


Assuntos
Asma , Interferon gama , Fator de Necrose Tumoral alfa , Corticosteroides/farmacologia , Corticosteroides/uso terapêutico , Asma/tratamento farmacológico , Asma/genética , Asma/metabolismo , Criança , Expressão Gênica , Humanos , Recém-Nascido , Inflamação/metabolismo , Interferon gama/metabolismo , Pulmão/metabolismo , Músculo Liso , Miócitos de Músculo Liso/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
Leuk Lymphoma ; 63(7): 1566-1579, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35259043

RESUMO

Chimeric antigen receptors (CAR)-modified T cells are an emerging therapeutic tool for chronic lymphocytic leukemia (CLL). However, in patients with CLL, well-known T-cell defects and the inhibitory properties of the tumor microenvironment (TME) hinder the efficacy of CAR T cells. We explored a novel approach combining CARs with lenalidomide, an immunomodulatory drug that tempers the immunosuppressive activity of the CLL TME. T cells from patients with CLL were engineered to express a CAR specific for CD23, a promising target antigen. Lenalidomide maintained the in vitro effector functions of CD23.CAR+ T cells effector functions in terms of antigen-specific cytotoxicity, cytokine release and proliferation. Overall, lenalidomide preserved functional CAR T-CLL cell immune synapses. In a Rag2-/-γc-/--based xenograft model of CLL, we demonstrated that, when combined with low-dose lenalidomide, CD23.CAR+ T cells efficiently migrated to leukemic sites and delayed disease progression when compared to CD23.CAR+ T cells given with rhIL-2. These observations underline the therapeutic potential of this novel CAR-based combination strategy in CLL.


Assuntos
Imunoterapia Adotiva , Leucemia Linfocítica Crônica de Células B , Humanos , Subunidade gama Comum de Receptores de Interleucina , Lenalidomida/farmacologia , Lenalidomida/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/terapia , Linfócitos T , Microambiente Tumoral
13.
Front Cardiovasc Med ; 8: 763930, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746270

RESUMO

Overlapping risks for cancer and cardiovascular diseases (CVD), the two leading causes of mortality worldwide, suggest a shared biology between these diseases. The role of senescence in the development of cancer and CVD has been established. However, its role as the intersection between these diseases remains unclear. Senescence was originally characterized by an irreversible cell cycle arrest after a high number of divisions, namely replicative senescence (RS). However, it is becoming clear that senescence can also be instigated by cellular stress, so-called stress-induced premature senescence (SIPS). Telomere shortening is a hallmark of RS. The contribution of telomere DNA damage and subsequent DNA damage response/repair to SIPS has also been suggested. Although cellular senescence can mediate cell cycle arrest, senescent cells can also remain metabolically active and secrete cytokines, chemokines, growth factors, and reactive oxygen species (ROS), so-called senescence-associated secretory phenotype (SASP). The involvement of SASP in both cancer and CVD has been established. In patients with cancer or CVD, SASP is induced by various stressors including cancer treatments, pro-inflammatory cytokines, and ROS. Therefore, SASP can be the intersection between cancer and CVD. Importantly, the conventional concept of senescence as the mediator of cell cycle arrest has been challenged, as it was recently reported that chemotherapy-induced senescence can reprogram senescent cancer cells to acquire "stemness" (SAS: senescence-associated stemness). SAS allows senescent cancer cells to escape cell cycle arrest with strongly enhanced clonogenic growth capacity. SAS supports senescent cells to promote both cancer and CVD, particularly in highly stressful conditions such as cancer treatments, myocardial infarction, and heart failure. As therapeutic advances have increased overlapping risk factors for cancer and CVD, to further understand their interaction may provide better prevention, earlier detection, and safer treatment. Thus, it is critical to study the mechanisms by which these senescence pathways (SAS/SASP) are induced and regulated in both cancer and CVD.

14.
Cells ; 10(11)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34831316

RESUMO

Cholangiocarcinoma (CCA), or cancer of bile duct epithelial cells, is a very aggressive malignancy characterized by early lymphangiogenesis in the tumor microenvironment (TME) and lymph node (LN) metastasis which correlate with adverse patient outcome. However, the specific roles of lymphatic endothelial cells (LECs) that promote LN metastasis remains unexplored. Here we aimed to identify the dynamic molecular crosstalk between LECs and CCA cells that activate tumor-promoting pathways and enhances lymphangiogenic mechanisms. Our studies show that inflamed LECs produced high levels of chemokine CXCL5 that signals through its receptor CXCR2 on CCA cells. The CXCR2-CXCL5 signaling axis in turn activates EMT (epithelial-mesenchymal transition) inducing MMP (matrix metalloproteinase) genes such as GLI, PTCHD, and MMP2 in CCA cells that promote CCA migration and invasion. Further, rate of mitochondrial respiration and glycolysis of CCA cells was significantly upregulated by inflamed LECs and CXCL5 activation, indicating metabolic reprogramming. CXCL5 also induced lactate production, glucose uptake, and mitoROS. CXCL5 also induced LEC tube formation and increased metabolic gene expression in LECs. In vivo studies using CCA orthotopic models confirmed several of these mechanisms. Our data points to a key finding that LECs upregulate critical tumor-promoting pathways in CCA via CXCR2-CXCL5 axis, which further augments CCA metastasis.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Quimiocina CXCL5/metabolismo , Colangiocarcinoma/metabolismo , Sistema Linfático/patologia , Receptores de Interleucina-8B/metabolismo , Transdução de Sinais , Animais , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Movimento Celular , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Células Endoteliais/patologia , Metabolismo Energético , Transição Epitelial-Mesenquimal/genética , Adesões Focais/metabolismo , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , Humanos , Inflamação/genética , Inflamação/patologia , Ácido Láctico/biossíntese , Linfonodos/patologia , Linfangiogênese/genética , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
15.
Am J Pathol ; 191(12): 2052-2063, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34509441

RESUMO

Increased lymphangiogenesis and lymph node metastasis, the important prognostic indicators of aggressive hepatobiliary malignancies such as hepatocellular cancer and cholangiocarcinoma, are associated with poor patient outcome. The liver produces 25% to 50% of total lymphatic fluid in the body and has a dense network of lymphatic vessels. The lymphatic system plays critical roles in fluid homeostasis and inflammation and immune response. Yet, lymphatic vessel alterations and function are grossly understudied in the context of liver pathology. Expansion of the lymphatic network has been documented in clinical samples of liver cancer; and although largely overlooked in the liver, tumor-induced lymphangiogenesis is an important player, increasing tumor metastasis in several cancers. This review aims to provide a detailed perspective on the current knowledge of alterations in the hepatic lymphatic system during liver malignancies, as well as various molecular signaling mechanisms and growth factors that may provide future targets for therapeutic intervention. In addition, the review also addresses current mechanisms and bottlenecks for effective therapeutic targeting of tumor-associated lymphangiogenesis.


Assuntos
Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Linfangiogênese , Metástase Linfática/terapia , Animais , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/terapia , Ductos Biliares Intra-Hepáticos/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Colangiocarcinoma/terapia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Linfangiogênese/genética , Metástase Linfática/genética , Metástase Linfática/patologia , Vasos Linfáticos/patologia , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
16.
Amino Acids ; 53(3): 359-380, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33586041

RESUMO

The antioxidant and anti-proinflammatory activities of L-leucine were investigated on oxidative testicular injury, ex vivo. In vitro analysis revealed L-leucine to be a potent scavenger of free radicals, while inhibiting acetylcholinesterase activity. Oxidative injury was induced in testicular tissues using FeSO4. Treatment with L-leucine led to depletion of oxidative-induced elevated levels of NO, MDA, and myeloperoxidase activity, with concomitant elevation of reduced glutathione and non-protein thiol levels, SOD and catalase activities. L-leucine caused a significant (p < 0.05) alteration of oxidative-elevated acetylcholinesterase and chymotrypsin activities, while concomitantly elevating the activities of ATPase, ENTPDase and 5'-nucleotidase. L-leucine conferred a protective effect against oxidative induced DNA damage. Molecular docking revealed molecular interactions with COX-2, IL-1 beta and iNOS. Treatment with L-leucine led to restoration of oxidative depleted ascorbic acid-2-sulfate, with concomitant depletion of the oxidative induced metabolites: D-4-Hydroxy-2-oxoglutarate, L-cystine, adenosine triphosphate, maleylacetoacetic acid, cholesteryl ester, and 6-Hydroxy flavin adenine dinucleotide. Treatment with L-leucine reactivated glycolysis while concomitantly deactivating oxidative-induced citrate cycle and increasing the impact-fold of purine metabolism pathway. L-leucine was predicted not to be an inhibitor of CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4, with a predicted LD50 value of 5000 mg/Kg and toxicity class of 5. Additionally, L-leucine showed little or no in vitro cytotoxicity in mammalian cells. These results suggest the therapeutic potentials of L-leucine on oxidative testicular injury, as evident by its ability to attenuate oxidative stress and proinflammation, while stalling cholinergic dysfunction and modulating nucleotide hyrolysis; as well as modulate oxidative dysregulated metabolites and their pathways.


Assuntos
Colinérgicos/metabolismo , Leucina/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Purinérgicos/metabolismo , Testículo/lesões , Animais , Anti-Inflamatórios/metabolismo , Antioxidantes/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colinérgicos/química , Dano ao DNA/efeitos dos fármacos , Compostos Ferrosos/toxicidade , Humanos , Leucina/química , Masculino , Simulação de Acoplamento Molecular , Ratos , Testículo/metabolismo
17.
Front Cardiovasc Med ; 7: 542485, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304925

RESUMO

Previously, we reported that post-translational modifications (PTMs) of MAGI1, including S741 phosphorylation and K931 de-SUMOylation, both of which are regulated by p90RSK activation, lead to endothelial cell (EC) activation. However, roles for p90RSK and MAGI1-PTMs in regulating EC permeability remain unclear despite MAGI1 being a junctional molecule. Here, we show that thrombin (Thb)-induced EC permeability, detected by the electric cell-substrate impedance sensing (ECIS) based system, was decreased by overexpression of dominant negative p90RSK or a MAGI1-S741A phosphorylation mutant, but was accelerated by overexpression of p90RSK, siRNA-mediated knockdown of magi1, or the MAGI1-K931R SUMOylation mutant. MAGI1 depletion also increased the mRNA and protein expression of the large tumor suppressor kinases 1 and 2 (LATS1/2), which inhibited YAP/TAZ activity and increased EC permeability. Because the endothelial barrier is a critical mediator of tumor hypoxia, we also evaluated the role of p90RSK activation in tumor vessel leakiness by using a relatively low dose of the p90RSK specific inhibitor, FMK-MEA. FMK-MEA significantly inhibited tumor vessel leakiness at a dose that does not affect morphology and growth of tumor vessels in vivo. These results provide novel insights into crucial roles for p90RSK-mediated MAGI1 PTMs and the Hippo pathway in EC permeability, as well as p90RSK activation in tumor vessel leakiness.

18.
Mol Genet Genomics ; 295(4): 1013-1026, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32363570

RESUMO

Obesity, a risk factor for multiple diseases (e.g. diabetes, hypertension, cancers) originates through complex interactions between genes and prevailing environment (food habit and lifestyle) that varies across populations. Indians exhibit a unique obesity phenotype with high abdominal adiposity for a given body weight compared to matched white populations suggesting presence of population-specific genetic and environmental factors influencing obesity. However, Indian population-specific genetic contributors for obesity have not been explored yet. Therefore, to identify potential genetic contributors, we performed a two-staged genome-wide association study (GWAS) for body mass index (BMI), a common measure to evaluate obesity in 5973 Indian adults and the lead findings were further replicated in 1286 Indian adolescents. Our study revealed novel association of variants-rs6913677 in BAI3 gene (p = 1.08 × 10-8) and rs2078267 in SLC22A11 gene (p = 4.62 × 10-8) at GWAS significance, and of rs8100011 in ZNF45 gene (p = 1.04 × 10-7) with near GWAS significance. As genetic loci may dictate the phenotype through modulation of epigenetic processes, we overlapped genetic data of identified signals with their DNA methylation patterns in 236 Indian individuals and performed methylation quantitative trait loci (meth-QTL) analysis. Further, functional roles of discovered variants and underlying genes were speculated using publicly available gene regulatory databases (ENCODE, JASPAR, GeneHancer, GTEx). The identified variants in BAI3 and SLC22A11 genes were found to dictate methylation patterns at unique CpGs harboring critical cis-regulatory elements. Further, BAI3, SLC22A11 and ZNF45 variants were located in repressive chromatin, active enhancer, and active chromatin regions, respectively, in human subcutaneous adipose tissue in ENCODE database. Additionally, these genomic regions represented potential binding sites for key transcription factors implicated in obesity and/or metabolic disorders. Interestingly, GTEx portal identify rs8100011 as a robust cis-expression quantitative trait locus (cis-eQTL) in subcutaneous adipose tissue (p = 1.6 × 10-7), and ZNF45 gene expression in skeletal muscle of Indian subjects showed an inverse correlation with BMI indicating its possible role in obesity. In conclusion, our study discovered 3 novel population-specific functional genetic variants (rs6913677, rs2078267, rs8100011) in 2 novel (SLC22A11 and ZNF45) and 1 earlier reported gene (BAI3) for BMI in Indians. Our study decodes key genomic loci underlying obesity phenotype in Indians that may serve as prospective drug targets in future.


Assuntos
Estudo de Associação Genômica Ampla , Fatores de Transcrição Kruppel-Like/genética , Obesidade/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Proteínas Repressoras/genética , Adolescente , Adulto , Povo Asiático/genética , Índice de Massa Corporal , Metilação de DNA , Feminino , Interação Gene-Ambiente , Predisposição Genética para Doença , Humanos , Indígenas Norte-Americanos/genética , Masculino , Obesidade/patologia , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Adulto Jovem
19.
Ann Lab Med ; 40(5): 390-397, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32311852

RESUMO

BACKGROUND: The effect of the interplay among inflammation, angiogenesis, extracellular matrix (ECM) degradation, and oxidative stress (OS) on the pathogenesis of endometriosis remains unclear. Previously, we demonstrated the role of OS in endometriosis. Here, we performed a comprehensive investigation of several molecules involved in inflammation, angiogenesis, and ECM degradation in women with endometriosis to study their interplay with OS. METHODS: Blood samples were collected from women with endometriosis (N=80), as well as from women with tubal factor infertility as controls (N=80). Interleukin (IL)-1ß, tumor necrosis factor-alpha, interferon-gamma, transforming growth factor-beta, IL-4, -10, -2, -6, -8, vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP)-2, -9, tissue inhibitor of metalloproteinases (TIMP)-1, -2, and cyclooxygenase (COX)-2 levels in serum samples were measured using an ELISA. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in peripheral blood mononuclear cells was measured using flow cytometry. RESULTS: Cytokines, VEGF, MMPs, and COX-2 were significantly higher and TIMPs were significantly lower in patients with endometriosis. Multivariate statistical analysis indicated that IL-10 was the most significant variable capable of discriminating endometriosis samples from controls. CONCLUSIONS: Deregulation of NF-κB activation by OS affects the expression of various cytokines in endometriosis. Elevated cytokine levels further up-regulate IL-10, which subsequently activates the MMPs, leading to excessive ECM degradation and angiogenesis. Moreover, IL-10 emerged as the most important molecule involved in the pathogenesis of endometriosis. Measurement of these molecules may help in better management of the patients with endometriosis.


Assuntos
Citocinas/sangue , Citocinas/metabolismo , Endometriose/patologia , Matriz Extracelular/metabolismo , Estresse Oxidativo , Adulto , Índice de Massa Corporal , Estudos de Casos e Controles , Ciclo-Oxigenase 2/sangue , Análise Discriminante , Endometriose/metabolismo , Estrogênios/sangue , Feminino , Humanos , Interleucina-10/sangue , Metaloproteinase 2 da Matriz/sangue , Análise Multivariada , NF-kappa B/metabolismo , Análise de Componente Principal , Estudos Retrospectivos , Inibidor Tecidual de Metaloproteinase-1/sangue , Fator A de Crescimento do Endotélio Vascular/sangue
20.
Cancer Immunol Res ; 7(12): 2036-2051, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31530560

RESUMO

Chronic lymphocytic leukemia (CLL) is a B-cell neoplasia characterized by protumor immune dysregulation involving nonmalignant cells of the microenvironment, including T lymphocytes and tumor-associated myeloid cells. Although therapeutic agents have improved treatment options for CLL, many patients still fail to respond. Some patients also show immunosuppression. We have investigated trabectedin, a marine-derived compound with cytotoxic activity on macrophages in solid tumors. Here, we demonstrate that trabectedin induces apoptosis of human primary leukemic cells and also selected myeloid and lymphoid immunosuppressive cells, mainly through the TRAIL/TNF pathway. Trabectedin modulates transcription and translation of IL6, CCL2, and IFNα in myeloid cells and FOXP3 in regulatory T cells. Human memory CD8+ T cells downregulate PD-1 and, along with monocytes, exert in vivo antitumor function. In xenograft and immunocompetent CLL mouse models, trabectedin has antileukemic effects and antitumor impact on the myeloid and lymphoid cells compartment. It depletes myeloid-derived suppressor cells and tumor-associated macrophages and increases memory T cells. Trabectedin also blocks the PD-1/PD-L1 axis by targeting PD-L1+ CLL cells, PD-L1+ monocytes/macrophages, and PD-1+ T cells. Thus, trabectedin behaves as an immunomodulatory drug with potentially attractive therapeutic value in the subversion of the protumor microenvironment and in overcoming chemoimmune resistance.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Fatores Imunológicos/farmacologia , Leucemia Linfocítica Crônica de Células B/imunologia , Trabectedina/farmacologia , Animais , Antígeno B7-H1/antagonistas & inibidores , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA