Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cancer Discov ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38587317

RESUMO

Microsatellite-unstable (MSI) cancers require WRN helicase to resolve replication stress due to expanded DNA (TA)n-dinucleotide repeats. WRN is a promising synthetic lethal target for MSI tumours, and WRN inhibitors are in development. Here, we used CRISPR-Cas9 base editing to map WRN residues critical for MSI cells, validating the helicase domain as the primary drug target. Fragment-based screening led to the development of potent and highly selective WRN helicase covalent inhibitors. These compounds selectively suppressed MSI model growth In vitro and In vivo by mimicking WRN loss, inducing DNA double-strand breaks at expanded TA-repeats and DNA damage. Assessment of biomarkers in preclinical models linked TA-repeat expansions and mismatch repair (MMR) alterations to compound activity. Efficacy was confirmed in immunotherapy-resistant organoids and patient-derived xenograft (PDX) models. The discovery of potent, selective covalent WRN inhibitors provides proof of concept for synthetic-lethal targeting of WRN in MSI cancer and tools to dissect WRN biology.

2.
Mol Cytogenet ; 15(1): 46, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289492

RESUMO

BACKGROUND: HAP1, a near-haploid human leukemic cancer cell line is often used in combination with CRISPR-Cas9 gene editing technology for genetic screens. HAP1 carries the Philadelphia chromosome (Ph) and an additional ~ 30 Mb fragment of chromosome 15 inserted into chromosome 19. The potential use of an in vitro cell line as a model system in biomedical research studies depends on its ability to maintain genome stability. Being a cancer cell line with a near-haploid genome, HAP1 is prone to genetic instability, which is further compounded by its tendency to diploidise in culture spontaneously. Moreover, CRISPR-Cas9 gene editing coupled with prolonged in-vitro cell culturing has the potential to induce unintended 'off-target' cytogenetic mutations. To gain an insight into chromosomal instability (CIN) and karyotype heterogeneity, 19 HAP1 cell lines were cytogenetically characterised, 17 of which were near-haploids and two double-haploids, using multiplex fluorescence in situ hybridisation (M-FISH), at single cell resolution. We focused on novel numerical (N) and structural (S) CIN and discussed the potential causal factors for the observed instability. For each cell line we examined its ploidy, gene editing status and its length of in-vitro cell culturing. RESULTS: Sixteen of the 19 cell lines had been gene edited with passage numbers ranging from 10 to 35. Diploidisation in 17 near-haploid cell lines ranged from 4 to 35% and percentage of N- and S-CIN in [1n] and [2n] metaphases ranged from 7 to 50% with two cell lines showing no CIN. Percentage of cells with CIN in the two double-haploid cell lines were 96% and 100% respectively. The most common S-CIN observed was deletion followed by translocation of both types, non-reciprocal and Robertsonian. Interestingly, we observed a prevalence of S-CIN associated with chromosome 13 in both near-and double-haploid cell lines, with a high incidence of Robertsonian translocation involving chromosome 13. Furthermore, locus-specific BAC (bacterial artificial chromosome) FISH enabled us to show for the first time that the additional chromosome 15 fragment is inserted into the p-arm rather than the q-arm of chromosome 19 of the HAP1 genome. CONCLUSION: Our study revealed a high incidence of CIN leading to karyotype heterogeneity in majority of the HAP1 cell lines with the number of chromosomal aberrations varying between cell lines. A noteworthy observation was the high frequency of structural chromosomal aberrations associated with chromosome 13. We showed that CRISPR-Cas9 gene editing technology in combination with spontaneous diploidisation and prolonged in-vitro cell culturing is potentially instrumental in inducing further chromosomal rearrangements in the HAP1 cell lines with existing CIN. We highlight the importance of maintaining cell lines at low passage and the need for regular monitoring to prevent implications in downstream applications. Our study also established that the additional fragment of chromosome 15 in the HAP1 genome is inserted into chromosome 19p rather than 19q.

3.
Cancer Discov ; 11(8): 1923-1937, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33837064

RESUMO

Targeted therapies, chemotherapy, and immunotherapy are used to treat patients with mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal cancer. The clinical effectiveness of targeted therapy and chemotherapy is limited by resistance and drug toxicities, and about half of patients receiving immunotherapy have disease that is refractory to immune checkpoint inhibitors. Loss of Werner syndrome ATP-dependent helicase (WRN) is a synthetic lethality in dMMR/MSI-H cells. To inform the development of WRN as a therapeutic target, we performed WRN knockout or knockdown in 60 heterogeneous dMMR colorectal cancer preclinical models, demonstrating that WRN dependency is an almost universal feature and a robust marker for patient selection. Furthermore, models of resistance to clinically relevant targeted therapy, chemotherapy, and immunotherapy retain WRN dependency. These data show the potential of therapeutically targeting WRN in patients with dMMR/MSI-H colorectal cancer and support WRN as a therapeutic option for patients with dMMR/MSI-H cancers refractory to current treatment strategies. SIGNIFICANCE: We found that a large, diverse set of dMMR/MSI-H colorectal cancer preclinical models, including models of treatment-refractory disease, are WRN-dependent. Our results support WRN as a promising synthetic-lethal target in dMMR/MSI-H colorectal cancer tumors as a monotherapy or in combination with targeted agents, chemotherapy, or immunotherapy.This article is highlighted in the In This Issue feature, p. 1861.


Assuntos
Neoplasias Colorretais/terapia , Reparo de Erro de Pareamento de DNA , Helicase da Síndrome de Werner/genética , Neoplasias Colorretais/genética , Tratamento Farmacológico , Humanos , Imunoterapia , Terapia de Alvo Molecular
5.
Genome Biol ; 21(1): 181, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32727536

RESUMO

BACKGROUND: Glioma is the most common intrinsic brain tumor and also occurs in the spinal cord. Activating EGFR mutations are common in IDH1 wild-type gliomas. However, the cooperative partners of EGFR driving gliomagenesis remain poorly understood. RESULTS: We explore EGFR-mutant glioma evolution in conditional mutant mice by whole-exome sequencing, transposon mutagenesis forward genetic screening, and transcriptomics. We show mutant EGFR is sufficient to initiate gliomagenesis in vivo, both in the brain and spinal cord. We identify significantly recurrent somatic alterations in these gliomas including mutant EGFR amplifications and Sub1, Trp53, and Tead2 loss-of-function mutations. Comprehensive functional characterization of 96 gliomas by genome-wide piggyBac insertional mutagenesis in vivo identifies 281 known and novel EGFR-cooperating driver genes, including Cdkn2a, Nf1, Spred1, and Nav3. Transcriptomics confirms transposon-mediated effects on expression of these genes. We validate the clinical relevance of new putative tumor suppressors by showing these are frequently altered in patients' gliomas, with prognostic implications. We discover shared and distinct driver mutations in brain and spinal gliomas and confirm in vivo differential tumor suppressive effects of Pten between these tumors. Functional validation with CRISPR-Cas9-induced mutations in novel genes Tead2, Spred1, and Nav3 demonstrates heightened EGFRvIII-glioma cell proliferation. Chemogenomic analysis of mutated glioma genes reveals potential drug targets, with several investigational drugs showing efficacy in vitro. CONCLUSION: Our work elucidates functional driver landscapes of EGFR-mutant gliomas, uncovering potential therapeutic strategies, and provides new tools for functional interrogation of gliomagenesis.


Assuntos
Neoplasias do Sistema Nervoso Central/genética , Elementos de DNA Transponíveis , Receptores ErbB/genética , Genes erbB , Glioma/genética , Animais , Carcinogênese , Receptores ErbB/metabolismo , Instabilidade Genômica , Humanos , Camundongos Transgênicos , Terapia de Alvo Molecular , Mutagênese Insercional , Neoplasias Experimentais , Proteínas do Tecido Nervoso , Sequenciamento do Exoma
6.
Nat Protoc ; 15(2): 266-315, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31907453

RESUMO

Mouse models of human cancer have transformed our ability to link genetics, molecular mechanisms and phenotypes. Both reverse and forward genetics in mice are currently gaining momentum through advances in next-generation sequencing (NGS). Methodologies to analyze sequencing data were, however, developed for humans and hence do not account for species-specific differences in genome structures and experimental setups. Here, we describe standardized computational pipelines specifically tailored to the analysis of mouse genomic data. We present novel tools and workflows for the detection of different alteration types, including single-nucleotide variants (SNVs), small insertions and deletions (indels), copy-number variations (CNVs), loss of heterozygosity (LOH) and complex rearrangements, such as in chromothripsis. Workflows have been extensively validated and cross-compared using multiple methodologies. We also give step-by-step guidance on the execution of individual analysis types, provide advice on data interpretation and make the complete code available online. The protocol takes 2-7 d, depending on the desired analyses.


Assuntos
Genômica/métodos , Neoplasias/genética , Análise de Sequência de DNA/métodos , Animais , Mutação INDEL , Perda de Heterozigosidade , Camundongos , Polimorfismo de Nucleotídeo Único , Fluxo de Trabalho
7.
Nat Commun ; 10(1): 2198, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097696

RESUMO

Many gene fusions are reported in tumours and for most their role remains unknown. As fusions are used for diagnostic and prognostic purposes, and are targets for treatment, it is crucial to assess their function in cancer. To systematically investigate the role of fusions in tumour cell fitness, we utilized RNA-sequencing data from 1011 human cancer cell lines to functionally link 8354 fusion events with genomic data, sensitivity to >350 anti-cancer drugs and CRISPR-Cas9 loss-of-fitness effects. Established clinically-relevant fusions were identified. Overall, detection of functional fusions was rare, including those involving cancer driver genes, suggesting that many fusions are dispensable for tumour fitness. Therapeutically actionable fusions involving RAF1, BRD4 and ROS1 were verified in new histologies. In addition, recurrent YAP1-MAML2 fusions were identified as activators of Hippo-pathway signaling in multiple cancer types. Our approach discriminates functional fusions, identifying new drivers of carcinogenesis and fusions that could have clinical implications.


Assuntos
Biomarcadores Tumorais/genética , Sistemas CRISPR-Cas/genética , Fusão Gênica/genética , Neoplasias/genética , Antineoplásicos/farmacologia , Carcinogênese/genética , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Resistencia a Medicamentos Antineoplásicos/genética , Detecção Precoce de Câncer/métodos , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/diagnóstico , Análise de Sequência de RNA
8.
Nat Commun ; 10(1): 1415, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926791

RESUMO

B-cell lymphoma (BCL) is the most common hematologic malignancy. While sequencing studies gave insights into BCL genetics, identification of non-mutated cancer genes remains challenging. Here, we describe PiggyBac transposon tools and mouse models for recessive screening and show their application to study clonal B-cell lymphomagenesis. In a genome-wide screen, we discover BCL genes related to diverse molecular processes, including signaling, transcriptional regulation, chromatin regulation, or RNA metabolism. Cross-species analyses show the efficiency of the screen to pinpoint human cancer drivers altered by non-genetic mechanisms, including clinically relevant genes dysregulated epigenetically, transcriptionally, or post-transcriptionally in human BCL. We also describe a CRISPR/Cas9-based in vivo platform for BCL functional genomics, and validate discovered genes, such as Rfx7, a transcription factor, and Phip, a chromatin regulator, which suppress lymphomagenesis in mice. Our study gives comprehensive insights into the molecular landscapes of BCL and underlines the power of genome-scale screening to inform biology.


Assuntos
Elementos de DNA Transponíveis/genética , Testes Genéticos/métodos , Linfoma de Células B/genética , Animais , Sistemas CRISPR-Cas/genética , Células Clonais , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Genes Neoplásicos , Genes Supressores de Tumor , Estudos de Associação Genética , Humanos , Perda de Heterozigosidade , Linfoma de Células B/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos B/metabolismo , Reprodutibilidade dos Testes
9.
Nature ; 554(7690): 62-68, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29364867

RESUMO

The poor correlation of mutational landscapes with phenotypes limits our understanding of the pathogenesis and metastasis of pancreatic ductal adenocarcinoma (PDAC). Here we show that oncogenic dosage-variation has a critical role in PDAC biology and phenotypic diversification. We find an increase in gene dosage of mutant KRAS in human PDAC precursors, which drives both early tumorigenesis and metastasis and thus rationalizes early PDAC dissemination. To overcome the limitations posed to gene dosage studies by the stromal richness of PDAC, we have developed large cell culture resources of metastatic mouse PDAC. Integration of cell culture genomes, transcriptomes and tumour phenotypes with functional studies and human data reveals additional widespread effects of oncogenic dosage variation on cell morphology and plasticity, histopathology and clinical outcome, with the highest KrasMUT levels underlying aggressive undifferentiated phenotypes. We also identify alternative oncogenic gains (Myc, Yap1 or Nfkb2), which collaborate with heterozygous KrasMUT in driving tumorigenesis, but have lower metastatic potential. Mechanistically, different oncogenic gains and dosages evolve along distinct evolutionary routes, licensed by defined allelic states and/or combinations of hallmark tumour suppressor alterations (Cdkn2a, Trp53, Tgfß-pathway). Thus, evolutionary constraints and contingencies direct oncogenic dosage gain and variation along defined routes to drive the early progression of PDAC and shape its downstream biology. Our study uncovers universal principles of Ras-driven oncogenesis that have potential relevance beyond pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Evolução Molecular , Dosagem de Genes , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Alelos , Animais , Carcinogênese/genética , Proteínas de Ciclo Celular , Inibidor p16 de Quinase Dependente de Ciclina/genética , Progressão da Doença , Feminino , Genes myc , Genes p53 , Humanos , Masculino , Camundongos , Mutação , Subunidade p52 de NF-kappa B/genética , Metástase Neoplásica/genética , Proteínas Nucleares/genética , Fenótipo , Fosfoproteínas/genética , Fatores de Transcrição/genética , Transcriptoma/genética , Fator de Crescimento Transformador beta1/genética , Proteínas de Sinalização YAP
10.
Nat Commun ; 7: 10770, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26916719

RESUMO

Mouse transgenesis has provided fundamental insights into pancreatic cancer, but is limited by the long duration of allele/model generation. Here we show transfection-based multiplexed delivery of CRISPR/Cas9 to the pancreas of adult mice, allowing simultaneous editing of multiple gene sets in individual cells. We use the method to induce pancreatic cancer and exploit CRISPR/Cas9 mutational signatures for phylogenetic tracking of metastatic disease. Our results demonstrate that CRISPR/Cas9-multiplexing enables key applications, such as combinatorial gene-network analysis, in vivo synthetic lethality screening and chromosome engineering. Negative-selection screening in the pancreas using multiplexed-CRISPR/Cas9 confirms the vulnerability of pancreatic cells to Brca2-inactivation in a Kras-mutant context. We also demonstrate modelling of chromosomal deletions and targeted somatic engineering of inter-chromosomal translocations, offering multifaceted opportunities to study complex structural variation, a hallmark of pancreatic cancer. The low-frequency mosaic pattern of transfection-based CRISPR/Cas9 delivery faithfully recapitulates the stochastic nature of human tumorigenesis, supporting wide applicability for biological/preclinical research.


Assuntos
Carcinogênese/genética , Pâncreas/metabolismo , Neoplasias Pancreáticas/genética , Animais , Proteína BRCA2/genética , Sistemas CRISPR-Cas , Deleção Cromossômica , Eletroporação , Engenharia Genética/métodos , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Camundongos , Mutação , Neoplasias Experimentais/genética , Filogenia , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas p21(ras)/genética , Análise de Sequência de DNA , Transfecção/métodos , Translocação Genética/genética
11.
Nat Methods ; 12(6): 519-22, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25915121

RESUMO

The simultaneous sequencing of a single cell's genome and transcriptome offers a powerful means to dissect genetic variation and its effect on gene expression. Here we describe G&T-seq, a method for separating and sequencing genomic DNA and full-length mRNA from single cells. By applying G&T-seq to over 220 single cells from mice and humans, we discovered cellular properties that could not be inferred from DNA or RNA sequencing alone.


Assuntos
DNA/genética , Genômica/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Mensageiro/genética , Animais , Linhagem Celular Tumoral , Humanos , Camundongos
12.
Nat Med ; 20(11): 1340-1347, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25326799

RESUMO

Genetically engineered mouse models (GEMMs) have dramatically improved our understanding of tumor evolution and therapeutic resistance. However, sequential genetic manipulation of gene expression and targeting of the host is almost impossible using conventional Cre-loxP-based models. We have developed an inducible dual-recombinase system by combining flippase-FRT (Flp-FRT) and Cre-loxP recombination technologies to improve GEMMs of pancreatic cancer. This enables investigation of multistep carcinogenesis, genetic manipulation of tumor subpopulations (such as cancer stem cells), selective targeting of the tumor microenvironment and genetic validation of therapeutic targets in autochthonous tumors on a genome-wide scale. As a proof of concept, we performed tumor cell-autonomous and nonautonomous targeting, recapitulated hallmarks of human multistep carcinogenesis, validated genetic therapy by 3-phosphoinositide-dependent protein kinase inactivation as well as cancer cell depletion and show that mast cells in the tumor microenvironment, which had been thought to be key oncogenic players, are dispensable for tumor formation.


Assuntos
Carcinoma Ductal Pancreático/patologia , Engenharia Genética/métodos , Terapia de Alvo Molecular , Medicina de Precisão/métodos , Recombinases/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/metabolismo , Linhagem da Célula , Feminino , Proteínas de Fluorescência Verde/metabolismo , Masculino , Mastócitos/metabolismo , Mastócitos/patologia , Camundongos , Modelos Biológicos , Metástase Neoplásica , Oncogenes , Pâncreas/patologia , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Reprodutibilidade dos Testes , Especificidade da Espécie , Células Estromais/metabolismo , Células Estromais/patologia , Tamoxifeno , Fatores de Tempo
13.
Nat Genet ; 43(5): 470-5, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21441929

RESUMO

Acute myeloid leukemia (AML) is a molecularly diverse malignancy with a poor prognosis whose largest subgroup is characterized by somatic mutations in NPM1, which encodes nucleophosmin. These mutations, termed NPM1c, result in cytoplasmic dislocation of nucleophosmin and are associated with distinctive transcriptional signatures, yet their role in leukemogenesis remains obscure. Here we report that activation of a humanized Npm1c knock-in allele in mouse hemopoietic stem cells causes Hox gene overexpression, enhanced self renewal and expanded myelopoiesis. One third of mice developed delayed-onset AML, suggesting a requirement for cooperating mutations. We identified such mutations using a Sleeping Beauty transposon, which caused rapid-onset AML in 80% of mice with Npm1c, associated with mutually exclusive integrations in Csf2, Flt3 or Rasgrp1 in 55 of 70 leukemias. We also identified recurrent integrations in known and newly discovered leukemia genes including Nf1, Bach2, Dleu2 and Nup98. Our results provide new pathogenetic insights and identify possible therapeutic targets in NPM1c+ AML.


Assuntos
Leucemia Mieloide Aguda/genética , Mutação , Proteínas Nucleares/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Progressão da Doença , Expressão Gênica , Técnicas de Introdução de Genes , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Leucemia Experimental/etiologia , Leucemia Experimental/genética , Leucemia Experimental/metabolismo , Leucemia Mieloide Aguda/etiologia , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Mielopoese/genética , Nucleofosmina , Proteínas Recombinantes/genética , Homologia de Sequência de Aminoácidos
14.
Science ; 330(6007): 1104-7, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-20947725

RESUMO

Transposons are mobile DNA segments that can disrupt gene function by inserting in or near genes. Here, we show that insertional mutagenesis by the PiggyBac transposon can be used for cancer gene discovery in mice. PiggyBac transposition in genetically engineered transposon-transposase mice induced cancers whose type (hematopoietic versus solid) and latency were dependent on the regulatory elements introduced into transposons. Analysis of 63 hematopoietic tumors revealed that PiggyBac is capable of genome-wide mutagenesis. The PiggyBac screen uncovered many cancer genes not identified in previous retroviral or Sleeping Beauty transposon screens, including Spic, which encodes a PU.1-related transcription factor, and Hdac7, a histone deacetylase gene. PiggyBac and Sleeping Beauty have different integration preferences. To maximize the utility of the tool, we engineered 21 mouse lines to be compatible with both transposon systems in constitutive, tissue- or temporal-specific mutagenesis. Mice with different transposon types, copy numbers, and chromosomal locations support wide applicability.


Assuntos
Elementos de DNA Transponíveis , Genes Neoplásicos , Testes Genéticos/métodos , Mutagênese Insercional , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/genética , Oncogenes , Regiões Promotoras Genéticas
15.
Genes Dev ; 24(13): 1377-88, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20551164

RESUMO

Loss of G1/S control is a hallmark of cancer, and is often caused by inactivation of the retinoblastoma pathway. However, mouse embryonic fibroblasts lacking the retinoblastoma genes RB1, p107, and p130 (TKO MEFs) are still subject to cell cycle control: Upon mitogen deprivation, they enter and complete S phase, but then firmly arrest in G2. We now show that G2-arrested TKO MEFs have accumulated DNA damage. Upon mitogen readdition, cells resume proliferation, although only part of the damage is repaired. As a result, mitotic cells show chromatid breaks and chromatid cohesion defects. These aberrations lead to aneuploidy in the descendent cell population. Thus, our results demonstrate that unfavorable growth conditions can cause genomic instability in cells lacking G1/S control. This mechanism may allow premalignant tumor cells to acquire additional genetic alterations that promote tumorigenesis.


Assuntos
Instabilidade Genômica , Mitógenos/fisiologia , Proteína do Retinoblastoma , Proteína p107 Retinoblastoma-Like , Proteína p130 Retinoblastoma-Like , Transdução de Sinais/fisiologia , Aneuploidia , Animais , Ciclo Celular , Proliferação de Células/efeitos dos fármacos , Centrômero , Quebras de DNA de Cadeia Dupla , Variações do Número de Cópias de DNA , Fibroblastos/citologia , Camundongos , Mitógenos/farmacologia , Proteína do Retinoblastoma/deficiência , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Proteína p107 Retinoblastoma-Like/deficiência , Proteína p107 Retinoblastoma-Like/genética , Proteína p107 Retinoblastoma-Like/metabolismo , Proteína p130 Retinoblastoma-Like/deficiência , Proteína p130 Retinoblastoma-Like/genética , Proteína p130 Retinoblastoma-Like/metabolismo
16.
Nature ; 434(7031): 325-37, 2005 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-15772651

RESUMO

The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence.


Assuntos
Cromossomos Humanos X/genética , Evolução Molecular , Genômica , Análise de Sequência de DNA , Animais , Antígenos de Neoplasias/genética , Centrômero/genética , Cromossomos Humanos Y/genética , Mapeamento de Sequências Contíguas , Troca Genética/genética , Mecanismo Genético de Compensação de Dose , Feminino , Ligação Genética/genética , Genética Médica , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , RNA/genética , Sequências Repetitivas de Ácido Nucleico/genética , Homologia de Sequência do Ácido Nucleico , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA