Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38866012

RESUMO

During homeostasis, a critical balance is maintained between myeloid-like progenitors and their differentiated progeny, which function to mitigate stress and innate immune challenges. The molecular mechanisms that help achieve this balance are not fully understood. Using genetic dissection in Drosophila, we show that a Wnt6/EGFR-signaling network simultaneously controls progenitor growth, proliferation, and differentiation. Unlike G1-quiescence of stem cells, hematopoietic progenitors are blocked in G2 phase by a ß-catenin-independent (Wnt/STOP) Wnt6 pathway that restricts Cdc25 nuclear entry and promotes cell growth. Canonical ß-catenin-dependent Wnt6 signaling is spatially confined to mature progenitors through localized activation of the tyrosine kinases EGFR and Abelson kinase (Abl), which promote nuclear entry of ß-catenin and facilitate exit from G2. This strategy combines transcription-dependent and -independent forms of both Wnt6 and EGFR pathways to create a direct link between cell-cycle control and differentiation. This unique combinatorial strategy employing conserved components may underlie homeostatic balance and stress response in mammalian hematopoiesis.

2.
Sci Signal ; 16(810): eabo5213, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37934809

RESUMO

Dysregulated Notch signaling is a common feature of cancer; however, its effects on tumor initiation and progression are highly variable, with Notch having either oncogenic or tumor-suppressive functions in various cancers. To better understand the mechanisms that regulate Notch function in cancer, we studied Notch signaling in a Drosophila tumor model, prostate cancer-derived cell lines, and tissue samples from patients with advanced prostate cancer. We demonstrated that increased activity of the Src-JNK pathway in tumors inactivated Notch signaling because of JNK pathway-mediated inhibition of the expression of the gene encoding the Notch S2 cleavage protease, Kuzbanian, which is critical for Notch activity. Consequently, inactive Notch accumulated in cells, where it was unable to transcribe genes encoding its target proteins, many of which have tumor-suppressive activities. These findings suggest that Src-JNK activity in tumors predicts Notch activity status and that suppressing Src-JNK signaling could restore Notch function in tumors, offering opportunities for diagnosis and targeted therapies for a subset of patients with advanced prostate cancer.


Assuntos
Proteínas de Drosophila , Neoplasias da Próstata , Animais , Masculino , Humanos , Proteínas de Drosophila/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Drosophila , Transdução de Sinais , Neoplasias da Próstata/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(12): e2119109119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35286208

RESUMO

Inflammatory response in Drosophila to sterile (axenic) injury in embryos and adults has received some attention in recent years, and most concentrate on the events at the injury site. Here we focus on the effect sterile injury has on the hematopoietic organ, the lymph gland, and the circulating blood cells in the larva, the developmental stage at which major events of hematopoiesis are evident. In mammals, injury activates Toll-like receptor/NF-κB signaling in macrophages, which then express and secrete secondary, proinflammatory cytokines. In Drosophila larvae, distal puncture injury of the body wall epidermis causes a rapid activation of Toll and Jun kinase (JNK) signaling throughout the hematopoietic system and the differentiation of a unique blood cell type, the lamellocyte. Furthermore, we find that Toll and JNK signaling are coupled in their activation. Secondary to this Toll/JNK response, a cytokine, Upd3, is induced as a Toll pathway transcriptional target, which then promotes JAK/STAT signaling within the blood cells. Toll and JAK/STAT signaling are required for the emergence of the injury-induced lamellocytes. This is akin to the derivation of specialized macrophages in mammalian systems. Upstream, at the injury site, a Duox- and peroxide-dependent signal causes the activation of the proteases Grass and SPE, needed for the activation of the Toll-ligand Spz, but microbial sensors or the proteases most closely associated with them during septic injury are not involved in the axenic inflammatory response.


Assuntos
Proteínas de Drosophila , Vespas , Ferimentos e Lesões , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Hematopoese , Inflamação , Fenótipo , Transdução de Sinais , Vespas/metabolismo
4.
J Clin Invest ; 132(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34813507

RESUMO

Various populations of cells are recruited to the heart after cardiac injury, but little is known about whether cardiomyocytes directly regulate heart repair. Using a murine model of ischemic cardiac injury, we demonstrate that cardiomyocytes play a pivotal role in heart repair by regulating nucleotide metabolism and fates of nonmyocytes. Cardiac injury induced the expression of the ectonucleotidase ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), which hydrolyzes extracellular ATP to form AMP. In response to AMP, cardiomyocytes released adenine and specific ribonucleosides that disrupted pyrimidine biosynthesis at the orotidine monophosphate (OMP) synthesis step and induced genotoxic stress and p53-mediated cell death of cycling nonmyocytes. As nonmyocytes are critical for heart repair, we showed that rescue of pyrimidine biosynthesis by administration of uridine or by genetic targeting of the ENPP1/AMP pathway enhanced repair after cardiac injury. We identified ENPP1 inhibitors using small molecule screening and showed that systemic administration of an ENPP1 inhibitor after heart injury rescued pyrimidine biosynthesis in nonmyocyte cells and augmented cardiac repair and postinfarct heart function. These observations demonstrate that the cardiac muscle cell regulates pyrimidine metabolism in nonmuscle cells by releasing adenine and specific nucleosides after heart injury and provide insight into how intercellular regulation of pyrimidine biosynthesis can be targeted and monitored for augmenting tissue repair.


Assuntos
Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Pirimidinas/biossíntese , Pirofosfatases/metabolismo , Regeneração , Transdução de Sinais , Monofosfato de Adenosina/genética , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Traumatismos Cardíacos/genética , Traumatismos Cardíacos/metabolismo , Camundongos , Diester Fosfórico Hidrolases/genética , Pirofosfatases/genética
5.
Development ; 148(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34918741

RESUMO

Genetic and genomic analysis in Drosophila suggests that hematopoietic progenitors likely transition into terminal fates via intermediate progenitors (IPs) with some characteristics of either, but perhaps maintaining IP-specific markers. In the past, IPs have not been directly visualized and investigated owing to lack of appropriate genetic tools. Here, we report a Split GAL4 construct, CHIZ-GAL4, that identifies IPs as cells physically juxtaposed between true progenitors and differentiating hemocytes. IPs are a distinct cell type with a unique cell-cycle profile and they remain multipotent for all blood cell fates. In addition, through their dynamic control of the Notch ligand Serrate, IPs specify the fate of direct neighbors. The Ras pathway controls the number of IP cells and promotes their transition into differentiating cells. This study suggests that it would be useful to characterize such intermediate populations of cells in mammalian hematopoietic systems.


Assuntos
Proteínas de Drosophila/genética , Hematopoese/genética , Proteína Jagged-1/genética , Receptores Notch/genética , Fatores de Transcrição/genética , Animais , Células Sanguíneas/citologia , Células Sanguíneas/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hemócitos , Lectinas/genética , Receptores de Interleucina/genética , Transdução de Sinais/genética , Células-Tronco/citologia , Células-Tronco/metabolismo
6.
Front Immunol ; 12: 716661, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394122

RESUMO

Although metabolic pathways have been shown to control differentiation and activation in peripheral T cells, metabolic studies on thymic T cell development are still lacking, especially in human tissue. In this study, we use transcriptomics and extracellular flux analyses to investigate the metabolic profiles of primary thymic and in vitro-derived mouse and human thymocytes. Core metabolic pathways, specifically glycolysis and oxidative phosphorylation, undergo dramatic changes between the double-negative (DN), double-positive (DP), and mature single-positive (SP) stages in murine and human thymus. Remarkably, despite the absence of the complex multicellular thymic microenvironment, in vitro murine and human T cell development recapitulated the coordinated decrease in glycolytic and oxidative phosphorylation activity between the DN and DP stages seen in primary thymus. Moreover, by inducing in vitro T cell differentiation from Rag1-/- mouse bone marrow, we show that reduced metabolic activity at the DP stage is independent of TCR rearrangement. Thus, our findings suggest that highly conserved metabolic transitions are critical for thymic T cell development.


Assuntos
Diferenciação Celular , Metabolismo Energético , Linfócitos T/citologia , Linfócitos T/metabolismo , Timócitos/citologia , Timócitos/metabolismo , Animais , Evolução Biológica , Biomarcadores , Linhagem Celular , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Linfopoese , Metaboloma , Metabolômica/métodos , Camundongos , Organoides , Timócitos/imunologia , Técnicas de Cultura de Tecidos
7.
Dev Cell ; 56(16): 2329-2347.e6, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34428399

RESUMO

Mammalian preimplantation embryos follow a stereotypic pattern of development from zygotes to blastocysts. Here, we use labeled nutrient isotopologue analysis of small numbers of embryos to track downstream metabolites. Combined with transcriptomic analysis, we assess the capacity of the embryo to reprogram its metabolism through development. Early embryonic metabolism is rigid in its nutrient requirements, sensitive to reductive stress and has a marked disequilibrium between two halves of the TCA cycle. Later, loss of maternal LDHB and transcription of zygotic products favors increased activity of bioenergetic shuttles, fatty-acid oxidation and equilibration of the TCA cycle. As metabolic plasticity peaks, blastocysts can develop without external nutrients. Normal developmental metabolism of the early embryo is distinct from cancer metabolism. However, similarities emerge upon reductive stress. Increased metabolic plasticity with maturation is due to changes in redox control mechanisms and to transcriptional reprogramming of later-stage embryos during homeostasis or upon adaptation to environmental changes.


Assuntos
Adaptação Fisiológica , Blastocisto/metabolismo , Metaboloma , Animais , Células Cultivadas , Ciclo do Ácido Cítrico , Glucose/metabolismo , Glutamina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NAD/metabolismo , Oxirredução , Transcriptoma
8.
Genetics ; 211(2): 367-417, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30733377

RESUMO

In this FlyBook chapter, we present a survey of the current literature on the development of the hematopoietic system in Drosophila The Drosophila blood system consists entirely of cells that function in innate immunity, tissue integrity, wound healing, and various forms of stress response, and are therefore functionally similar to myeloid cells in mammals. The primary cell types are specialized for phagocytic, melanization, and encapsulation functions. As in mammalian systems, multiple sites of hematopoiesis are evident in Drosophila and the mechanisms involved in this process employ many of the same molecular strategies that exemplify blood development in humans. Drosophila blood progenitors respond to internal and external stress by coopting developmental pathways that involve both local and systemic signals. An important goal of these Drosophila studies is to develop the tools and mechanisms critical to further our understanding of human hematopoiesis during homeostasis and dysfunction.


Assuntos
Drosophila/imunologia , Hematopoese , Animais , Drosophila/citologia , Drosophila/fisiologia , Hemócitos/citologia , Hemócitos/imunologia , Estresse Fisiológico
9.
Cell ; 175(1): 117-132.e21, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30197082

RESUMO

The metabolic state of a cell is influenced by cell-extrinsic factors, including nutrient availability and growth factor signaling. Here, we present extracellular matrix (ECM) remodeling as another fundamental node of cell-extrinsic metabolic regulation. Unbiased analysis of glycolytic drivers identified the hyaluronan-mediated motility receptor as being among the most highly correlated with glycolysis in cancer. Confirming a mechanistic link between the ECM component hyaluronan and metabolism, treatment of cells and xenografts with hyaluronidase triggers a robust increase in glycolysis. This is largely achieved through rapid receptor tyrosine kinase-mediated induction of the mRNA decay factor ZFP36, which targets TXNIP transcripts for degradation. Because TXNIP promotes internalization of the glucose transporter GLUT1, its acute decline enriches GLUT1 at the plasma membrane. Functionally, induction of glycolysis by hyaluronidase is required for concomitant acceleration of cell migration. This interconnection between ECM remodeling and metabolism is exhibited in dynamic tissue states, including tumorigenesis and embryogenesis.


Assuntos
Proteínas de Transporte/fisiologia , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiologia , Metabolismo dos Carboidratos/fisiologia , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Glucose/metabolismo , Transportador de Glucose Tipo 1 , Glicólise/fisiologia , Humanos , Ácido Hialurônico/fisiologia , Hialuronoglucosaminidase/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Transdução de Sinais , Tristetraprolina/metabolismo , Tristetraprolina/fisiologia
10.
Elife ; 52016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27585295

RESUMO

A well-characterized metabolic landmark for aggressive cancers is the reprogramming from oxidative phosphorylation to aerobic glycolysis, referred to as the Warburg effect. Models mimicking this process are often incomplete due to genetic complexities of tumors and cell lines containing unmapped collaborating mutations. In order to establish a system where individual components of oncogenic signals and metabolic pathways can be readily elucidated, we induced a glycolytic tumor in the Drosophila wing imaginal disc by activating the oncogene PDGF/VEGF-receptor (Pvr). This causes activation of multiple oncogenic pathways including Ras, PI3K/Akt, Raf/ERK, Src and JNK. Together this network of genes stabilizes Hifα (Sima) that in turn, transcriptionally up-regulates many genes encoding glycolytic enzymes. Collectively, this network of genes also causes inhibition of pyruvate dehydrogenase (PDH) activity resulting in diminished ox-phos levels. The high ROS produced during this process functions as a feedback signal to consolidate this metabolic reprogramming.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glicólise , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Animais , Proteínas de Ligação a DNA/biossíntese , Modelos Animais de Doenças , Drosophila , Proteínas de Drosophila/biossíntese , Redes Reguladoras de Genes , Fosforilação Oxidativa , Complexo Piruvato Desidrogenase/biossíntese
11.
Elife ; 3: e03626, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25201876

RESUMO

Blood progenitors within the lymph gland, a larval organ that supports hematopoiesis in Drosophila melanogaster, are maintained by integrating signals emanating from niche-like cells and those from differentiating blood cells. We term the signal from differentiating cells the 'equilibrium signal' in order to distinguish it from the 'niche signal'. Earlier we showed that equilibrium signaling utilizes Pvr (the Drosophila PDGF/VEGF receptor), STAT92E, and adenosine deaminase-related growth factor A (ADGF-A) (Mondal et al., 2011). Little is known about how this signal initiates during hematopoietic development. To identify new genes involved in lymph gland blood progenitor maintenance, particularly those involved in equilibrium signaling, we performed a genetic screen that identified bip1 (bric à brac interacting protein 1) and Nucleoporin 98 (Nup98) as additional regulators of the equilibrium signal. We show that the products of these genes along with the Bip1-interacting protein RpS8 (Ribosomal protein S8) are required for the proper expression of Pvr.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Diferenciação Celular/genética , Drosophila melanogaster/genética , Genes de Insetos , Estudos de Associação Genética , Testes Genéticos , Hematopoese , Linfonodos/citologia , Modelos Biológicos , Fenótipo , Interferência de RNA , Reprodutibilidade dos Testes , Transdução de Sinais/genética
12.
Methods ; 68(1): 242-51, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24613936

RESUMO

Analyses of the Drosophila hematopoietic system are becoming more and more prevalent as developmental and functional parallels with vertebrate blood cells become more evident. Investigative work on the fly blood system has, out of necessity, led to the identification of new molecular markers for blood cell types and lineages and to the refinement of useful molecular genetic tools and analytical methods. This review briefly describes the Drosophila hematopoietic system at different developmental stages, summarizes the major useful cell markers and tools for each stage, and provides basic protocols for practical analysis of circulating blood cells and of the lymph gland, the larval hematopoietic organ.


Assuntos
Biologia do Desenvolvimento/métodos , Hematopoese/genética , Larva , Linfa/metabolismo , Animais , Linhagem da Célula , Drosophila , Linfa/citologia
13.
Development ; 140(23): 4647-56, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24255094

RESUMO

Stem cells and their progenitors are maintained within a microenvironment, termed the niche, through local cell-cell communication. Systemic signals originating outside the niche also affect stem cell and progenitor behavior. This review summarizes studies that pertain to nutritional effects on stem and progenitor cell maintenance and proliferation in Drosophila. Multiple tissue types are discussed that utilize the insulin-related signaling pathway to convey nutritional information either directly to these progenitors or via other cell types within the niche. The concept of systemic control of these cell types is not limited to Drosophila and may be functional in vertebrate systems, including mammals.


Assuntos
Drosophila melanogaster/metabolismo , Nicho de Células-Tronco/fisiologia , Células-Tronco/metabolismo , Animais , Comunicação Celular/fisiologia , Diferenciação Celular/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Insulina/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/citologia , Masculino , Transdução de Sinais/genética
14.
Cell ; 155(5): 1141-53, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24267893

RESUMO

Drosophila hematopoietic progenitor maintenance involves both near neighbor and systemic interactions. This study shows that olfactory receptor neurons (ORNs) function upstream of a small set of neurosecretory cells that express GABA. Upon olfactory stimulation, GABA from these neurosecretory cells is secreted into the circulating hemolymph and binds to metabotropic GABAB receptors expressed on blood progenitors within the hematopoietic organ, the lymph gland. The resulting GABA signal causes high cytosolic Ca(2+), which is necessary and sufficient for progenitor maintenance. Thus, the activation of an odorant receptor is essential for blood progenitor maintenance, and consequently, larvae raised on minimal odor environments fail to sustain a pool of hematopoietic progenitors. This study links sensory perception and the effects of its deprivation on the integrity of the hematopoietic and innate immune systems in Drosophila. PAPERCLIP:


Assuntos
Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Hemolinfa/citologia , Células-Tronco/citologia , Animais , Tecido Linfoide/citologia , Neurônios/metabolismo , Percepção Olfatória , Neurônios Receptores Olfatórios/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Ácido gama-Aminobutírico/metabolismo
15.
Fly (Austin) ; 7(4): 263-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23899817

RESUMO

The NimC1 molecule has been described as a phagocytosis receptor, and is being used as a marker for professional phagocytes, the plasmatocytes, in Drosophila melanogaster. In studies including tumor-biology, developmental biology, and cell mediated immunity, monoclonal antibodies (P1a and P1b) to the NimC1 antigen are used. As we observed that these antibodies did not react with plasmatocytes of several strains and genetic combinations, a molecular analysis was performed on the structure of the nimC1 gene. In these strains we found 2 deletions and an insertion within the nimC1 gene, which may result in the production of a truncated NimC1 protein. The NimC1 positivity was regained by recombining the mutation with a wild-type allele or by using nimC1 mutant lines under heterozygous conditions. By means of these procedures or using the recombined stock, NimC1 can be used as a marker for phagocytic cells in the majority of the possible genetic backgrounds.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Fagócitos/metabolismo , Receptores Imunológicos/metabolismo , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Expressão Gênica , Variação Genética , Receptores Imunológicos/genética , Receptores Imunológicos/fisiologia
16.
Dev Biol ; 384(2): 301-12, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23510717

RESUMO

The heparin sulfate proteoglycan Terribly Reduced Optic Lobes (Trol) is the Drosophila melanogaster homolog of the vertebrate protein Perlecan. Trol is expressed as part of the extracellular matrix (ECM) found in the hematopoietic organ, called the lymph gland. In the normal lymph gland, the ECM forms thin basement membranes around individual or small groups of blood progenitors. The pattern of basement membranes, reported by Trol expression, is spatio-temporally correlated to hematopoiesis. The central, medullary zone which contain undifferentiated hematopoietic progenitors has many, closely spaced membranes. Fewer basement membranes are present in the outer, cortical zone, where differentiation of blood cells takes place. Loss of trol causes a dramatic change of the ECM into a three-dimensional, spongy mass that fills wide spaces scattered throughout the lymph gland. At the same time proliferation is reduced, leading to a significantly smaller lymph gland. Interestingly, differentiation of blood progenitors in trol mutants is precocious, resulting in the break-down of the usual zonation of the lymph gland. which normally consists of an immature center (medullary zone) where cells remain undifferentiated, and an outer cortical zone, where differentiation sets in. We present evidence that the effect of Trol on blood cell differentiation is mediated by Hedgehog (Hh) signaling, which is known to be required to maintain an immature medullary zone. Overexpression of hh in the background of a trol mutation is able to rescue the premature differentiation phenotype. Our data provide novel insight into the role of the ECM component Perlecan during Drosophila hematopoiesis.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/citologia , Matriz Extracelular/fisiologia , Proteoglicanas de Heparan Sulfato/fisiologia , Linfonodos/citologia , Animais , Compartimento Celular , Proteínas de Drosophila/metabolismo , Proteínas Hedgehog/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Transdução de Sinais
18.
Genes Dev ; 26(18): 2027-37, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22925885

RESUMO

Mitochondrial structure and function are highly dynamic, but the potential roles for cell signaling pathways in influencing these properties are not fully understood. Reduced mitochondrial function has been shown to cause cell cycle arrest, and a direct role of signaling pathways in controlling mitochondrial function during development and disease is an active area of investigation. Here, we show that the conserved Yorkie/YAP signaling pathway implicated in the control of organ size also functions in the regulation of mitochondria in Drosophila as well as human cells. In Drosophila, activation of Yorkie causes direct transcriptional up-regulation of genes that regulate mitochondrial fusion, such as opa1-like (opa1) and mitochondria assembly regulatory factor (Marf), and results in fused mitochondria with dramatic reduction in reactive oxygen species (ROS) levels. When mitochondrial fusion is genetically attenuated, the Yorkie-induced cell proliferation and tissue overgrowth are significantly suppressed. The function of Yorkie is conserved across evolution, as activation of YAP2 in human cell lines causes increased mitochondrial fusion. Thus, mitochondrial fusion is an essential and direct target of the Yorkie/YAP pathway in the regulation of organ size control during development and could play a similar role in the genesis of cancer.


Assuntos
Proteínas de Drosophila/metabolismo , Mitocôndrias/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Animais , Proliferação de Células , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Perfilação da Expressão Gênica , Humanos , Mitocôndrias/ultraestrutura , Proteínas Nucleares/genética , Fenótipo , Transativadores/genética , Proteínas de Sinalização YAP
19.
G3 (Bethesda) ; 2(8): 843-51, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22908033

RESUMO

Mitochondria are able to modulate cell state and fate during normal and pathophysiologic conditions through a nuclear-mediated mechanism collectively termed as a retrograde response. Our previous studies in Drosophila melanogaster have clearly established that progress through the cell cycle is precisely regulated by the intrinsic activity of the mitochondrion by specific signaling cascades mounted by the cell. As a means to further our understanding of how mitochondrial energy status affects nuclear control of basic cell decisions, we have employed Affymetrix microarray-based transcriptional profiling of Drosophila S2 cells knocked down for the gene encoding subunit Va of the complex IV of the mitochondrial electron transport chain. The profiling data identify transcriptional upregulation of glycolytic genes, and metabolic studies confirm this increase in glycolysis. The data provide a model of the shift of metabolism from a predominately oxidative state toward a predominately aerobic glycolytic state mediated through transcriptional control. The transcriptional changes alter many signaling systems, including p53, insulin, hypoxia-induced factor α, and conserved mitochondrial retrograde responses. This rich dataset provides many novel targets for further understanding the mechanism whereby the mitochondrion manages energy substrate disposition and directs cellular fate decisions.


Assuntos
Drosophila melanogaster/genética , Regulação da Expressão Gênica , Mitocôndrias/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético/genética , Perfilação da Expressão Gênica , Glicólise/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Insulina/genética , Insulina/metabolismo , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Interferência de RNA , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima
20.
Nat Cell Biol ; 14(4): 394-400, 2012 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-22407365

RESUMO

The Drosophila lymph gland is a haematopoietic organ in which progenitor cells, which are most akin to the common myeloid progenitor in mammals, proliferate and differentiate into three types of mature cell--plasmatocytes, crystal cells and lamellocytes--the functions of which are reminiscent of mammalian myeloid cells. During the first and early second instars of larval development, the lymph gland contains only progenitors, whereas in the third instar, a medial region of the primary lobe of the lymph gland called the medullary zone contains these progenitors, and maturing blood cells are found juxtaposed in a peripheral region designated the cortical zone. A third group of cells referred to as the posterior signalling centre functions as a haematopoietic niche. Similarly to mammalian myeloid cells, Drosophila blood cells respond to multiple stresses including hypoxia, infection and oxidative stress. However, how systemic signals are sensed by myeloid progenitors to regulate cell-fate determination has not been well described. Here, we show that the haematopoietic progenitors of Drosophila are direct targets of systemic (insulin) and nutritional (essential amino acid) signals, and that these systemic signals maintain the progenitors by promoting Wingless (WNT in mammals) signalling. We expect that this study will promote investigation of such possible direct signal sensing mechanisms by mammalian myeloid progenitors.


Assuntos
Aminoácidos Essenciais/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Insulina/metabolismo , Células Progenitoras Mieloides/metabolismo , Transdução de Sinais , Aminoácidos Essenciais/farmacologia , Animais , Células Sanguíneas/citologia , Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/imunologia , Células Sanguíneas/patologia , Diferenciação Celular/efeitos dos fármacos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/crescimento & desenvolvimento , Privação de Alimentos , Hematopoese/efeitos dos fármacos , Insulina/farmacologia , Larva/citologia , Larva/efeitos dos fármacos , Larva/metabolismo , Tecido Linfoide/citologia , Tecido Linfoide/efeitos dos fármacos , Células Progenitoras Mieloides/citologia , Células Progenitoras Mieloides/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína Wnt1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA