Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Front Microbiol ; 14: 1228845, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075913

RESUMO

Introduction: Horse clinics are hotspots for the accumulation and spread of clinically relevant and zoonotic multidrug-resistant bacteria, including extended-spectrum ß-lactamase producing (ESBL) Enterobacterales. Although median laparotomy in cases of acute equine colic is a frequently performed surgical intervention, knowledge about the effects of peri-operative antibiotic prophylaxis (PAP) based on a combination of penicillin and gentamicin on the gut microbiota is limited. Methods: We collected fecal samples of horses from a non-hospitalized control group (CG) and from horses receiving either a pre-surgical single-shot (SSG) or a peri-operative 5-day (5DG) course of PAP. To assess differences between the two PAP regimens and the CG, all samples obtained at hospital admission (t0), on days three (t1) and 10 (t2) after surgery, were screened for ESBL-producing Enterobacterales and subjected to 16S rRNA V1-V2 gene sequencing. Results: We included 48 samples in the SSG (n = 16 horses), 45 in the 5DG (n = 15), and 20 in the CG (for t0 and t1, n = 10). Two samples of equine patients receiving antibiotic prophylaxis (6.5%) were positive for ESBL-producing Enterobacterales at t0, while this rate increased to 67% at t1 and decreased only slightly at t2 (61%). Shannon diversity index (SDI) was used to evaluate alpha-diversity changes, revealing there was no significant difference between horses suffering from acute colic (5DG, SDImean of 5.90, SSG, SDImean of 6.17) when compared to the CG (SDImean of 6.53) at t0. Alpha-diversity decreased significantly in both PAP groups at t1, while at t2 the onset of microbiome recovery was noticed. Although we did not identify a significant SDImean difference with respect to PAP duration, the community structure (beta-diversity) was considerably restricted in samples of the 5DG at t1, most likely due to the ongoing administration of antibiotics. An increased abundance of Enterobacteriaceae, especially Escherichia, was noted for both study groups at t1. Conclusion: Colic surgery and PAP drive the equine gut microbiome towards dysbiosis and reduced biodiversity that is accompanied by an increase of samples positive for ESBL-producing Enterobacterales. Further studies are needed to reveal important factors promoting the increase and residency of ESBL-producing Enterobacterales among hospitalized horses.

2.
J Parkinsons Dis ; 13(7): 1079-1106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927277

RESUMO

The increasing global burden of Parkinson's disease (PD), termed the PD pandemic, is exceeding expectations related purely to population aging and is likely driven in part by lifestyle changes and environmental factors. Pesticides are well recognized risk factors for PD, supported by both epidemiological and experimental evidence, with multiple detrimental effects beyond dopaminergic neuron damage alone. The microbiome-gut-brain axis has gained much attention in recent years and is considered to be a significant contributor and driver of PD pathogenesis. In this narrative review, we first focus on how both pesticides and the microbiome may influence PD initiation and progression independently, describing pesticide-related central and peripheral neurotoxicity and microbiome-related local and systemic effects due to dysbiosis and microbial metabolites. We then depict the bidirectional interplay between pesticides and the microbiome in the context of PD, synthesizing current knowledge about pesticide-induced dysbiosis, microbiome-mediated alterations in pesticide availability, metabolism and toxicity, and complex systemic pesticide-microbiome-host interactions related to inflammatory and metabolic pathways, insulin resistance and other mechanisms. An overview of the unknowns follows, and the role of pesticide-microbiome interactions in the proposed body-/brain-first phenotypes of PD, the complexity of environmental exposures and gene-environment interactions is discussed. The final part deals with possible further steps for translation, consisting of recommendations on future pesticide use and research as well as an outline of promising preventive/therapeutic approaches targeted on strengthening or restoring a healthy gut microbiome, closing with a summary of current gaps and future perspectives in the field.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Praguicidas , Humanos , Doença de Parkinson/etiologia , Eixo Encéfalo-Intestino , Praguicidas/toxicidade , Disbiose/induzido quimicamente , Disbiose/metabolismo , Microbioma Gastrointestinal/fisiologia
3.
Sci Rep ; 13(1): 13348, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587126

RESUMO

Gut microbiota metabolites have been mechanistically linked to inflammatory pathway activation and atherosclerosis, which are major causes of vascular stiffness (VS). Aiming to investigate if the gut microbiome might be involved in VS development, we performed a cross-sectional study (n = 3,087), nested within the population-based European Prospective Investigations into Cancer and Nutrition (EPIC) Potsdam. We investigated the correlation of the gut microbiota (alpha diversity and taxa abundance) with 3 vascular stiffness measures: carotid-femoral (PWV), aortic augmentation index (AIX) and ankle-brachial index (ABI). Shannon index was not significantly associated with VS but the number of observed Amplicon Sequence Variants (ASV) was positively associated with PWV and AIX. We found a total of 19 ASVs significantly associated with at least one VS measure in multivariable-adjusted models. One ASV (classified as Sutterella wadsworthensis) was associated with 2 VS measures, AIX (- 0.11 ± 0.04) and PWV (-0.14 ± 0.03). Other examples of ASVs associated with VS were Collinsella aerofaciens, previously reported to be affected by diet and Bacteroides uniformis, commercially available as probiotics. In conclusion, our study suggests a potential role of individual components of the gut microbiota in the aetiology of VS.


Assuntos
Vacinas Anticâncer , Microbioma Gastrointestinal , Rigidez Vascular , Humanos , Microbioma Gastrointestinal/genética , Estudos Transversais , Estudos Prospectivos
4.
Inflamm Bowel Dis ; 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540889

RESUMO

BACKGROUND: Primary sclerosing cholangitis (PSC) is a progressive liver disease associated with inflammatory bowel disease (IBD). The percentage of PSC patients diagnosed with concomitant IBD varies considerably between studies. This raises the question whether all PSC patients would show intestinal inflammation if screened thoroughly, even in the absence of symptoms. METHODS: To address this question, we collected intestinal biopsies of healthy controls (n = 34), PSC (n = 25), PSC-IBD (n = 41), and IBD (n = 51) patients in a cross-sectional study and carried out cytokine expression profiling, 16S sequencing, in-depth histology, and endoscopy scoring. RESULTS: We found that the vast majority of PSC patients even without clinically manifest IBD showed infiltration of immune cells and increased expression of IL17A and IFNG in intestinal biopsies. However, expression of IL10 and FOXP3 were likewise increased, which may explain why these PSC patients have intestinal inflammation only on a molecular level. This subclinical inflammation in PSC patients was focused in the distal colon, whereas PSC-IBD patients showed inflammation either at the distal colon or on the right side of the colon and the terminal ileum. Furthermore, we observed that PSC patients without IBD showed signs of dysbiosis and exhibited a distinct microbial profile compared with healthy controls. CONCLUSIONS: We found a gradient of intestinal inflammation in the vast majority of PSC patients even in the absence of IBD. Thus, further studies evaluating the effect of anti-inflammatory therapies in PSC patients and their impact on the emergence of clinically manifest IBD and colorectal cancer development are needed.

5.
Inflamm Bowel Dis ; 29(7): 1118-1132, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36735955

RESUMO

BACKGROUND: Microbial communities have long been suspected to influence inflammatory processes in the gastrointestinal tract of patients with inflammatory bowel disease. However, these effects are often influenced by treatments and can rarely be analyzed in treatment-naïve onset cases. Specifically, microbial differences between IBD pathologies in new onset cases have rarely been investigated and can provide novel insight into the dynamics of the microbiota in Crohn's disease (CD) and ulcerative colitis (UC). METHODS: Fifty-six treatment-naïve IBD onset patients (67.3% CD, 32.7% UC) and 97 healthy controls were recruited from the Maltese population. Stool samples were collected after diagnosis but before administration of anti-inflammatory treatments. Fecal microbial communities were assessed via 16S rRNA gene sequencing and subjected to ecological analyses to determine disease-specific differences between pathologies and disease subtypes or to predict future treatment options. RESULTS: We identified significant differences in community composition, variability, and diversity between healthy and diseased individuals-but only small to no differences between the newly diagnosed, treatment-naïve UC and CD cohorts. Network analyses revealed massive turnover of bacterial interactions between healthy and diseased communities, as well as between CD and UC communities, as signs of disease-specific changes of community dynamics. Furthermore, we identified taxa and community characteristics serving as predictors for prospective treatments. CONCLUSION: Untreated and newly diagnosed IBD shows clear differences from healthy microbial communities and an elevated level of disturbance, but only the network perspective revealed differences between pathologies. Furthermore, future IBD treatment is to some extent predictable by microbial community characteristics.


Treatment-naïve IBD onset patients from Malta show clear differences from healthy microbial communities and an elevated level of community disturbance, although differences between pathologies are only revealed by a network perspective. Furthermore, future IBD treatment is predictable by microbial community characteristics.


Assuntos
Colite Ulcerativa , Doença de Crohn , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/genética , Doença de Crohn/diagnóstico , Doença de Crohn/microbiologia , Colite Ulcerativa/microbiologia , Doenças Inflamatórias Intestinais/microbiologia , Fezes/microbiologia
6.
Microbiol Spectr ; 10(3): e0061622, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35532243

RESUMO

Inflammatory bowel disease (IBD) is a chronic, relapsing, inflammatory disorder which comprises two main conditions: Crohn's disease (CD) and ulcerative colitis (UC). Although the etiology of IBD has not been fully elucidated, the gut microbiota is hypothesized to play a vital role in its development. The aim of this cross-sectional study was to characterize the fecal microbiota in CD or UC patients in a state of remission to reveal potential factors sustaining residual levels of inflammation and triggering disease relapses. Ninety-eight IBD patients in a state of clinical remission (66 UC, 32 CD) and 97 controls were recruited, and stool samples, as well as detailed patient data, were collected. After DNA extraction, the variable regions V1 and V2 of the 16S rRNA gene were amplified and sequenced. Patients with IBD had a decrease in alpha diversity compared to that of healthy controls, and the beta diversity indices showed dissimilarity between the cohorts. Healthy controls were associated with the beneficial organisms unclassified Akkermansia species (Akkermansia uncl.), Oscillibacter uncl., and Coprococcus uncl., while flavonoid-degrading bacteria were associated with IBD. Network analysis identified highly central and influential disease markers and a strongly correlated network module of Enterobacteriaceae which was associated with IBD and could act as drivers for residual inflammatory processes sustaining and triggering IBD, even in a state of low disease activity. The microbiota in IBD patients is significantly different from that of healthy controls, even in a state of remission, which implicates the microbiota as an important driver of chronicity in IBD. IMPORTANCE Dysbiosis in inflammatory bowel disease (IBD) has been implicated as a causal or contributory factor to the pathogenesis of the disease. This study, done on patients in remission while accounting for various confounding factors, shows significant community differences and altered community dynamics, even after acute inflammation has subsided. A cluster of Enterobacteriaceae was linked with Crohn's disease, suggesting that this cluster, which contains members known to disrupt colonization resistance and form biofilms, persists during quiescence and can lead to chronic inflammation. Flavonoid-degrading bacteria were also associated with IBD, raising the possibility that modification of dietary flavonoids might induce and maintain remission in IBD.


Assuntos
Colite Ulcerativa , Doença de Crohn , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Bactérias/genética , Colite Ulcerativa/microbiologia , Estudos Transversais , Disbiose/microbiologia , Enterobacteriaceae/genética , Fezes/microbiologia , Flavonoides , Microbioma Gastrointestinal/genética , Humanos , Inflamação , Doenças Inflamatórias Intestinais/microbiologia , RNA Ribossômico 16S/genética
7.
Cancers (Basel) ; 14(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35205727

RESUMO

The standard diagnostic and follow-up examination for bladder cancer is diagnostic cystoscopy, an invasive test that requires compliance for a long period. Urine cytology and recent biomarkers come short of replacing cystoscopy. Urine liquid biopsy promises to solve this problem and potentially allows early detection, evaluation of treatment efficacy, and surveillance. A previous study reached 52-68% sensitivity using small-panel sequencing but could increase sensitivity to 68-83% by adding aneuploidy and promoter mutation detection. Here, we explore whether a large 127-gene panel alone is sufficient to detect tumor mutations in urine from bladder cancer patients. We recruited twelve bladder cancer patients, obtained preoperative and postoperative urine samples, and successfully analyzed samples from eleven patients. In ten patients, we found at least one mutation in bladder-cancer-associated genes, i.e., a promising sensitivity of 91%. In total, we identified 114 variants, of which 90 were predicted as nonbenign, 30% were associated with cancer, and 13% were actionable according to the CIViC database. Sanger sequencing of the patients' formalin-fixed, paraffin-embedded (FFPE) tumor tissues confirmed the findings. We concluded that incorporating urine liquid biopsy is a promising strategy in the management of bladder cancer patients.

8.
Nutr Res ; 97: 1-10, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34922120

RESUMO

Repeated weight loss cycles are associated with increased cardiovascular morbidity. Meal-induced thrombin formation, measured as prothrombin fragment 1+2 (F1+2), is observed in individuals with overweight after weight loss, and postprandial effects can be one of the mechanisms underlying harmful effects during intentional weight loss. We hypothesize that consumption of high-fat meals during intentional weight loss triggers a prothrombotic state by increasing postprandial F1+2 or decreasing fibrin clot lysis in individuals with obesity, and that the response associates with the gut bacteria composition. A cross-over meal study was conducted in patients admitted to bariatric surgery during dietary weight loss (N = 20) and surgical weight loss (N = 16) (weight loss groups). High-fat (67 E%) and low-fat (16 E%) meals were served at 08:15 and 10:00 on 2 study days. Blood samples collected at 08:00 (fasting), 12:00, and 14:00 were analyzed for triglycerides, activated factor VII (FVIIa), F1+2, D-dimer, fibrinogen, tissue factor , and fibrin clot lysis. The proportion of Gram-negative bacteria and bacterial diversity were analyzed in fecal samples obtained less than 24 hours before the meal test. Triglyceride and FVIIa increased after high-fat meals in both weight loss groups, whereas D-dimer (dietary group) and F1+2 decreased and tissue factor and fibrin clot lysis did not change. There was a negative association between the proportion of Gram-negative bacteria and changes in FVIIa in the surgery group. Postprandial FVII activation after high-fat meals is not accompanied by increased F1+2, irrespective of the weight loss intervention, but might be associated with the proportion of Gram-negative gut bacteria.


Assuntos
Fibrina , Trombina , Gorduras na Dieta/farmacologia , Fator VIIa , Humanos , Refeições , Obesidade , Período Pós-Prandial , Redução de Peso
9.
Sci Rep ; 11(1): 6677, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758296

RESUMO

Gallstone disease affects up to twenty percent of the population in western countries and is a significant contributor to morbidity and health care expenditure. Intestinal microbiota have variously been implicated as either contributing to gallstone formation or to be affected by cholecystectomy. We conducted a large-scale investigation on 404 gallstone carriers, 580 individuals post-cholecystectomy and 984 healthy controls with similar distributions of age, sex, body mass index, smoking habits, and food-frequency-score. All 1968 subjects were recruited from the population-based Study-of-Health-in-Pomerania (SHIP), which includes transabdominal gallbladder ultrasound. Fecal microbiota profiles were determined by 16S rRNA gene sequencing. No significant differences in microbiota composition were detected between gallstone carriers and controls. Individuals post-cholecystectomy exhibited reduced microbiota diversity, a decrease in the potentially beneficial genus Faecalibacterium and an increase in the opportunistic pathogen Escherichia/Shigella. The absence of an association between the gut microbiota and the presence of gallbladder stones suggests that there is no intestinal microbial risk profile increasing the likelihood of gallstone formation. Cholecystectomy, on the other hand, is associated with distinct microbiota changes that have previously been implicated in unfavorable health effects and may not only contribute to gastrointestinal infection but also to the increased colon cancer risk of cholecystectomized patients.


Assuntos
Doenças Assintomáticas , Colecistectomia/efeitos adversos , Disbiose/etiologia , Cálculos Biliares/diagnóstico , Cálculos Biliares/cirurgia , Microbioma Gastrointestinal , Idoso , Estudos de Casos e Controles , Colecistectomia/métodos , Fezes/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ultrassonografia
10.
Nat Genet ; 53(2): 147-155, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33462482

RESUMO

The intestinal microbiome is implicated as an important modulating factor in multiple inflammatory1,2, neurologic3 and neoplastic diseases4. Recent genome-wide association studies yielded inconsistent, underpowered and rarely replicated results such that the role of human host genetics as a contributing factor to microbiome assembly and structure remains uncertain5-11. Nevertheless, twin studies clearly suggest host genetics as a driver of microbiome composition11. In a genome-wide association analysis of 8,956 German individuals, we identified 38 genetic loci to be associated with single bacteria and overall microbiome composition. Further analyses confirm the identified associations of ABO histo-blood groups and FUT2 secretor status with Bacteroides and Faecalibacterium spp. Mendelian randomization analysis suggests causative and protective effects of gut microbes, with clade-specific effects on inflammatory bowel disease. This holistic investigative approach of the host, its genetics and its associated microbial communities as a 'metaorganism' broaden our understanding of disease etiology, and emphasize the potential for implementing microbiota in disease treatment and management.


Assuntos
Sistema ABO de Grupos Sanguíneos/genética , Microbioma Gastrointestinal/genética , Bacteroides/genética , Faecalibacterium/genética , Fucosiltransferases/genética , Estudo de Associação Genômica Ampla , Alemanha , Humanos , Lactase/genética , Desequilíbrio de Ligação , Análise da Randomização Mendeliana , Galactosídeo 2-alfa-L-Fucosiltransferase
11.
Gut ; 70(3): 522-530, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33168600

RESUMO

OBJECTIVE: The intestinal microbiome affects the prevalence and pathophysiology of a variety of diseases ranging from inflammation to cancer. A reduced taxonomic or functional diversity of the microbiome was often observed in association with poorer health outcomes or disease in general. Conversely, factors or manifest diseases that determine the long-term stability or instability of the microbiome are largely unknown. We aimed to identify disease-relevant phenotypes associated with faecal microbiota (in-)stability. DESIGN: A total of 2564 paired faecal samples from 1282 participants of the population-based Study of Health in Pomerania (SHIP) were collected at a 5-year (median) interval and microbiota profiles determined by 16S rRNA gene sequencing. The changes in faecal microbiota over time were associated with highly standardised and comprehensive phenotypic data to determine factors related to microbiota (in-)stability. RESULTS: The overall microbiome landscape remained remarkably stable over time. The greatest microbiome instability was associated with factors contributing to metabolic syndrome such as fatty liver disease and diabetes mellitus. These, in turn, were associated with an increase in facultative pathogens such as Enterobacteriaceae or Escherichia/Shigella. Greatest stability of the microbiome was determined by higher initial alpha diversity, female sex, high household income and preserved exocrine pancreatic function. Participants who newly developed fatty liver disease or diabetes during the 5-year follow-up already displayed significant microbiota changes at study entry when the diseases were absent. CONCLUSION: This study identifies distinct components of metabolic liver disease to be associated with instability of the intestinal microbiome, increased abundance of facultative pathogens and thus greater susceptibility toward dysbiosis-associated diseases.


Assuntos
Diabetes Mellitus/metabolismo , Disbiose/complicações , Insuficiência Pancreática Exócrina/fisiopatologia , Microbioma Gastrointestinal , Hepatopatias/metabolismo , Adulto , Idoso , Biodiversidade , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Alemanha , Humanos , Renda/estatística & dados numéricos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Fenótipo , RNA Ribossômico 16S/análise , Fatores de Risco , Fatores Sexuais
12.
Clin Transl Gastroenterol ; 11(9): e00232, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33094959

RESUMO

INTRODUCTION: Exocrine pancreatic function is a critical host factor in determining the intestinal microbiota composition. Diseases affecting the exocrine pancreas could therefore influence the gut microbiome. We investigated the changes in gut microbiota of patients with chronic pancreatitis (CP). METHODS: Patients with clinical and imaging evidence of CP (n = 51) were prospectively recruited and compared with twice the number of nonpancreatic disease controls matched for distribution in age, sex, body mass index, smoking, diabetes mellitus, and exocrine pancreatic function (stool elastase). From stool samples of these 153 subjects, DNA was extracted, and intestinal microbiota composition was determined by bacterial 16S ribosomal RNA gene sequencing. RESULTS: Patients with CP exhibited severely reduced microbial diversity (Shannon diversity index and Simpson diversity number, P < 0.001) with an increased abundance of facultative pathogenic organisms (P < 0.001) such as Enterococcus (q < 0.001), Streptococcus (q < 0.001), and Escherichia.Shigella (q = 0.002). The CP-associated changes were independent of exocrine pancreatic insufficiency. Short-chain fatty acid producers, considered protective for epithelia such as Faecalibacterium (q < 0.001), showed reduced abundance in patients with CP. Of 4 additional patients with CP previously treated with antibiotics (ceftriaxone and metronidazole), 3 patients were characterized by distinct Enterococcus overgrowth. DISCUSSION: CP is associated with marked gut microbiota dysbiosis, greatly reduced diversity, and increased abundance of opportunistic pathogens, specifically those previously isolated from infected pancreatic necrosis. Taxa with a potentially beneficial role in intestinal barrier function are depleted. These changes can increase the probability of complications from pancreatitis such as infected fluid collections or small intestinal bacterial overgrowth (see Graphical Abstract, Supplementary Digital Content 1, http://links.lww.com/CTG/A383).


Assuntos
Disbiose/diagnóstico , Insuficiência Pancreática Exócrina/microbiologia , Microbioma Gastrointestinal/fisiologia , Pancreatite Crônica/complicações , Adulto , Idoso , DNA Bacteriano/isolamento & purificação , Disbiose/microbiologia , Enterococcus/genética , Enterococcus/isolamento & purificação , Escherichia/genética , Escherichia/isolamento & purificação , Insuficiência Pancreática Exócrina/fisiopatologia , Faecalibacterium/genética , Faecalibacterium/isolamento & purificação , Fezes/microbiologia , Feminino , Humanos , Mucosa Intestinal/microbiologia , Masculino , Pessoa de Meia-Idade , Pancreatite Crônica/microbiologia , Estudos Prospectivos , RNA Ribossômico 16S/genética , Shigella/genética , Shigella/isolamento & purificação , Streptococcus/genética , Streptococcus/isolamento & purificação
13.
Front Immunol ; 11: 1421, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754153

RESUMO

Background: Infants with ileostomies often suffer from sodium depletion, ultimately leading to a failure to thrive. Moreover, early-infantile microbial dysbiosis may potentially aggravate weight faltering. Given that sodium supplementation has been used to restore weight gain and feeding practices largely determine infantile microbiota, the current study investigated the effect of sodium chloride (NaCl) on weight gain and intestinal microbiome in infants with jejuno- and ileostomies. Methods: A prospective cohort study including 24 neonates with enterostomies compared 19 subjects receiving oral NaCl (5.85%) to five subjects without supplementation with respect to postoperative changes in thrive and the intestinal microbiome. Results: Infants receiving NaCl after enterostomy-surgery showed vastly improved weight gain and an increased abundance of Lactobacillus in fecal samples, as compared to subjects without oral supplement who displayed decreasing percentiles for weight and did not reveal a higher abundance of probiotic strains within the ostomy effluent. Contrarily, Klebsiella was equally enriched in supplemented infants, reflecting a higher susceptibility for infections in preterm neonates. Discussion: Our findings support oral NaCl supplementation as a mainstay of postoperative treatment in infants with small bowel ostomies who are predisposed to suffer from a sodium depletion-associated failure to thrive. Not only does NaCl promote weight gain by increasing glucose resorption, but it also appears to induce microbial restoration by enhancing the abundance of health-promoting probiotic bacteria. This finding has an even greater significance when facing an elevated Klebsiella/Bifidobacteria (K/B) ratio, believed to represent an early-life microbial biomarker for development of allergic disease.


Assuntos
Suplementos Nutricionais , Microbioma Gastrointestinal , Ileostomia/efeitos adversos , Cloreto de Sódio/administração & dosagem , Aumento de Peso/efeitos dos fármacos , Estudos de Coortes , Insuficiência de Crescimento/etiologia , Feminino , Humanos , Recém-Nascido , Masculino , Estudos Prospectivos
14.
Front Immunol ; 11: 838, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477345

RESUMO

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is caused by recessive mutations in the AIRE gene. The hallmark of the disease is the production of highly neutralizing autoantibodies against type I interferons and IL-22. Considering the importance of IL-22 in maintaining mucosal barrier integrity and shaping its microbial community, we sought to study potential changes in the oral cavity in this model of human IL-22 paucity. We found that besides known Th22 cell deficiency, APECED patients have significantly fewer circulating MAIT cells with potential IL-22 secreting capacity. Saliva samples from APECED patients revealed local inflammation, the presence of autoantibodies against IFN-α and IL-22, and alterations in the oral microbiota. Moreover, gene expression data of buccal biopsy samples suggested impaired antimicrobial response and cell proliferation, both of which are processes regulated by IL-22. Our data complement the knowledge gained from mouse models and support the concept of IL-22 being a critical homeostatic cytokine in human mucosal sites.


Assuntos
Interleucinas/deficiência , Interleucinas/imunologia , Microbiota/imunologia , Boca/imunologia , Boca/microbiologia , Poliendocrinopatias Autoimunes/imunologia , Adolescente , Adulto , Autoanticorpos/imunologia , Biópsia , Criança , Feminino , Regulação da Expressão Gênica/imunologia , Humanos , Inflamação , Interferon-alfa/imunologia , Masculino , Boca/patologia , Mutação , Saliva/imunologia , Adulto Jovem , Interleucina 22
15.
Gut ; 69(4): 665-672, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31243055

RESUMO

BACKGROUND: Patients with primary sclerosing cholangitis (PSC) display an altered colonic microbiome compared with healthy controls. However, little is known on the bile duct microbiome and its interplay with bile acid metabolism in PSC. METHODS: Patients with PSC (n=43) and controls without sclerosing cholangitis (n=22) requiring endoscopic retrograde cholangiography were included prospectively. Leading indications in controls were sporadic choledocholithiasis and papillary adenoma. A total of 260 biospecimens were collected from the oral cavity, duodenal fluid and mucosa and ductal bile. Microbiomes of the upper alimentary tract and ductal bile were profiled by sequencing the 16S-rRNA-encoding gene (V1-V2). Bile fluid bile acid composition was measured by high-performance liquid chromatography mass spectrometry and validated in an external cohort (n=20). RESULTS: The bile fluid harboured a diverse microbiome that was distinct from the oral cavity, the duodenal fluid and duodenal mucosa communities. The upper alimentary tract microbiome differed between PSC patients and controls. However, the strongest differences between PSC patients and controls were observed in the ductal bile fluid, including reduced biodiversity (Shannon entropy, p=0.0127) and increase of pathogen Enterococcus faecalis (FDR=4.18×10-5) in PSC. Enterococcus abundance in ductal bile was strongly correlated with concentration of the noxious secondary bile acid taurolithocholic acid (r=0.60, p=0.0021). CONCLUSION: PSC is characterised by an altered microbiome of the upper alimentary tract and bile ducts. Biliary dysbiosis is linked with increased concentrations of the proinflammatory and potentially cancerogenic agent taurolithocholic acid.


Assuntos
Bile/microbiologia , Colangite Esclerosante/microbiologia , Disbiose/complicações , Microbiota , Adulto , Idoso , Idoso de 80 Anos ou mais , Ductos Biliares/microbiologia , Estudos de Casos e Controles , Estudos de Coortes , Duodeno/microbiologia , Disbiose/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mucosa Bucal/microbiologia , Adulto Jovem
16.
Sci Rep ; 9(1): 20100, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882864

RESUMO

Helicobacter (H.) pylori is the most important cause for peptic ulcer disease and a risk factor for gastric carcinoma. How colonization with H. pylori affects the intestinal microbiota composition in humans is unknown. We investigated the association of H. pylori infection with intestinal microbiota composition in the population-based cohort Study-of-Health-in-Pomerania (SHIP)-TREND. Anti-H. pylori serology and H. pylori stool antigen tests were used to determine the H. pylori infection status. The fecal microbiota composition of 212 H. pylori positive subjects and 212 matched negative control individuals was assessed using 16S rRNA gene sequencing. H. pylori infection was found to be significantly associated with fecal microbiota alterations and a general increase in fecal microbial diversity. In infected individuals, the H. pylori stool antigen load determined a larger portion of the microbial variation than age or sex. The highest H. pylori stool antigen loads were associated with a putatively harmful microbiota composition. This study demonstrates profound alterations in human fecal microbiota of H. pylori infected individuals. While the increased microbiota diversity associated with H. pylori infection as well as changes in abundance of specific genera could be considered to be beneficial, others may be associated with adverse health effects, reflecting the complex relationship between H. pylori and its human host.


Assuntos
Biodiversidade , Fezes/microbiologia , Microbioma Gastrointestinal , Infecções por Helicobacter/microbiologia , Helicobacter pylori , Estudos de Casos e Controles , Suscetibilidade a Doenças , Feminino , Infecções por Helicobacter/imunologia , Helicobacter pylori/imunologia , Interações Hospedeiro-Patógeno , Humanos , Masculino , Fatores de Risco
17.
Artigo em Inglês | MEDLINE | ID: mdl-31624178

RESUMO

OBJECTIVE: To determine whether the gut microbiota shows overabundance of commensal bacteria species in patients with anti-NMDA receptor (NMDAR) encephalitis, similar to patients with MS or neuromyelitis optica where they potentially balance pro- and anti-inflammatory immune responses or participate in disease pathogenesis by molecular mimicry. METHODS: Intestinal microbiota was characterized in patients with NMDAR encephalitis (n = 23, mean age: 34 ± 12.7 years; 21 females) and age/sex/environment-matched healthy controls (n = 24, 40 ± 14.2 years; 22 females) using stool bacteria 16S rDNA sequencing and classification in operational taxonomic units (OTUs). Statistical analyses focused on intraindividual and interindividual bacterial diversity and identification of differentially abundant taxa. RESULTS: Patients with NMDAR encephalitis and controls had similar microbiome profiles of the gut microbiota regarding intraindividual bacterial diversity, OTU distribution, ratio between regional and local species diversity when testing all OTUs, and genera with a relative abundance greater than 0.5%. Similarly, the subgroup of NMDAR encephalitis patients with an ovarian teratoma (n = 3) showed no differences in microbiome variation compared with controls. Patients in the acute encephalitis stage (n = 8) showed significant differences in the numbers of Clostridium XVIII, Clostridium IV, Oscillibacter, Prevotella, and Blautia; however, significance was lost after correction for multiple testing. CONCLUSION: Patients with NMDAR encephalitis and controls both had a normal gut microbiome. The lack of overabundance of certain bacterial species in patients suggests that microbiome changes are no major contributors to the pathogenesis, disease course, or prognosis in NMDAR encephalitis. Despite the small sample size and heterogeneous groups, findings indicate differences to other neuroimmunologic diseases.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato/microbiologia , Microbioma Gastrointestinal , Doença Aguda , Adulto , Fezes/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
18.
PLoS One ; 12(10): e0185919, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28982164

RESUMO

The methanogenic archaeon Methanomassiliicoccus luminyensis strain B10T was isolated from human feces just a few years ago. Due to its remarkable metabolic properties, particularly the degradation of trimethylamines, this strain was supposed to be used as "Archaebiotic" during metabolic disorders of the human intestine. However, there is still no data published regarding adaptations to the natural habitat of M. luminyensis as it has been shown for the other two reported mucosa-associated methanoarchaea. This study aimed at unraveling susceptibility of M. luminyensis to antimicrobial peptides as well as its immunogenicity. By using the established microtiter plate assay adapted to the anaerobic growth requirements of methanogenic archaea, we demonstrated that M. luminyensis is highly sensitive against LL32, a derivative of human cathelicidin (MIC = 2 µM). However, the strain was highly resistant against the porcine lysin NK-2 (MIC = 10 µM) and the synthetic antilipopolysaccharide peptide (Lpep) (MIC>10 µM) and overall differed from the two other methanoarchaea, Methanobrevibacter smithii and Methanosphaera stadtmanae in respect to AMP sensitivity. Moreover, only weak immunogenic potential of M. luminyensis was demonstrated using peripheral blood mononuclear cells (PBMCs) and monocyte-derived dendritic cells (moDCs) by determining release of pro-inflammatory cytokines. Overall, our findings clearly demonstrate that the archaeal gut inhabitant M. luminyensis is susceptible to the release of human-derived antimicrobial peptides and exhibits low immunogenicity towards human immune cells in vitro-revealing characteristics of a typical commensal gut microbe.


Assuntos
Anti-Infecciosos/farmacologia , Intestinos/microbiologia , Methanomicrobiaceae/imunologia , Peptídeos/farmacologia , Humanos , Methanomicrobiaceae/efeitos dos fármacos , Methanomicrobiaceae/crescimento & desenvolvimento
19.
FEMS Microbiol Lett ; 360(2): 137-43, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25212593

RESUMO

The aim of the present study was to verify our hypothesis concerning the differential induction of various antimicrobial and immunomodulatory responses in oral epithelial cells by diverse bacterial species clusters. For this purpose, oral biofilms between 1 and 14 days of maturation (36 volunteers) were co-incubated with gingival epithelial cells. Subsequently, human ß-defensin (hBD)-2, hBD-3, LL-37, interleukin (IL)-1ß, IL-6, IL-8 and IL-10 mRNA expression profiles were quantified by quantitative reverse transcription PCR. The correlation between bacterial species and the host innate immune response was determined by relating these results to existing 16S rRNA phylogenetic analysis by amplicon sequencing (Langfeldt et al. 2014. PLoS One 9: e87449). Data were analysed by multiple factor analysis. Transcription of hBD-2 and hBD-3 was significantly associated with the abundance of species of the Prevotella cluster and the absence of species of the Streptococcus cluster. IL-1ß, -6, -8 and -10 mRNA syntheses were significant correlated with Leptotrichia species [Leptotrichia 302H02 (0.448, P < 0.0001), Leptotrichia nbw822e09c1 (0.214, P = 0.008) and Leptotrichia wadei (0.218, P = 0.007)] of the Prevotella cluster. In the third dimension IL-10 and members of the Prevotella cluster were negatively correlated, whereas hBD-3 and IL-1ß, IL-6 and IL-8 were positive correlated to axis 3, like members of the Proteobacteria cluster. In conclusion, distinct species of health- and disease-associated bacterial clusters induce antibacterial or immunomodulatory reactions in oral epithelial cells during early stages of bacteria-host interactions.


Assuntos
Bactérias/imunologia , Biofilmes/crescimento & desenvolvimento , Células Epiteliais/imunologia , Imunidade Inata , Mucosa Bucal/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Linhagem Celular , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Perfilação da Expressão Gênica , Voluntários Saudáveis , Humanos , Interleucinas/biossíntese , Interleucinas/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , beta-Defensinas/biossíntese , beta-Defensinas/genética
20.
PLoS One ; 9(6): e99411, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24915454

RESUMO

The methanoarchaea Methanosphaera stadtmanae and Methanobrevibacter smithii are known to be part of the indigenous human gut microbiota. Although the immunomodulatory effects of bacterial gut commensals have been studied extensively in the last decade, the impact of methanoarchaea in human's health and disease was rarely examined. Consequently, we studied and report here on the effects of M. stadtmanae and M. smithii on human immune cells. Whereas exposure to M. stadtmanae leads to substantial release of proinflammatory cytokines in monocyte-derived dendritic cells (moDCs), only weak activation was detected after incubation with M. smithii. Phagocytosis of M. stadtmanae by moDCs was demonstrated by confocal microscopy as well as transmission electronic microscopy (TEM) and shown to be crucial for cellular activation by using specific inhibitors. Both strains, albeit to different extents, initiate a maturation program in moDCs as revealed by up-regulation of the cell-surface receptors CD86 and CD197 suggesting additional activation of adaptive immune responses. Furthermore, M. stadtmanae and M. smithii were capable to alter the gene expression of antimicrobial peptides in moDCs to different extents. Taken together, our findings strongly argue that the archaeal gut inhabitants M. stadtmanae and M. smithii are specifically recognized by the human innate immune system. Moreover, both strains are capable of inducing an inflammatory cytokine response to different extents arguing that they might have diverse immunomodulatory functions. In conclusion, we propose that the impact of intestinal methanoarchaea on pathological conditions involving the gut microbiota has been underestimated until now.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Intestinos/microbiologia , Methanobacteriaceae/fisiologia , Methanobrevibacter/fisiologia , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Citocinas/metabolismo , Células Dendríticas/ultraestrutura , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Regulação da Expressão Gênica , Células HEK293 , Humanos , Monócitos/citologia , Fagocitose , Receptores de Superfície Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA