Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 22(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38535468

RESUMO

The extracts of Corydalis heterocarpa, a salt-tolerant plant, exhibit diverse physiological properties, including anti-inflammatory, anticancer, and antiadipogenic effects. However, the anti-aging effects of C. heterocarpa extract (CHE) on human skin cells have not yet been investigated. In the present study, we determined that CHE inhibited senescence-associated ß-galactosidase (SA-ß-gal)-stained senescent human dermal fibroblasts (HDFs). Furthermore, CHE markedly suppressed the expression of major regulatory proteins involved in senescence, including p53, p21, and caveolin-1. Interestingly, CHE promoted autophagic flux, as confirmed by the formation of microtubule-associated protein 1 light chain 3B (LC3B) puncta and lysosomal activity. Notably, using RNA sequencing (RNA-seq), we showed that CHE selectively regulated the gene expression of leucine-rich repeat and sterile alpha motif-containing 1 (LRSAM1), an important regulator of autophagy. The adenosine-monophosphate activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) pathway, which is essential for autophagy regulation, was also modulated by CHE. LRSAM1 depletion not only inhibited LC3B expression but also decreased the autophagy flux induced by CHE. Moreover, the knockdown of LRSAM1 suppressed the reversal of CHE-induced senescence in old HDFs. Collectively, our study has revealed the rejuvenating effects and molecular mechanisms of CHE, suggesting that CHE may be a promising anti-aging agent.


Assuntos
Corydalis , Humanos , Autofagia , Pele , Envelhecimento , Extratos Vegetais , Ubiquitina-Proteína Ligases
2.
Exp Mol Med ; 56(3): 686-699, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480902

RESUMO

Cancer cells often exhibit resistance to apoptotic cell death, but they may be vulnerable to other types of cell death. Elucidating additional mechanisms that govern cancer cell death is crucial for developing new therapies. Our research identified cyclic AMP-responsive element-binding protein 3 (CREB3) as a crucial regulator and initiator of a unique cell death mechanism known as karyoptosis. This process is characterized by nuclear shrinkage, deformation, and the loss of nuclear components following nuclear membrane rupture. We found that the N-terminal domain (aa 1-230) of full-length CREB3 (CREB3-FL), which is anchored to the nuclear inner membrane (INM), interacts with lamins and chromatin DNA. This interaction maintains a balance between the outward force exerted by tightly packed DNA and the inward constraining force, thereby preserving INM integrity. Under endoplasmic reticulum (ER) stress, aberrant cleavage of CREB3-FL at the INM leads to abnormal accumulation of the cleaved form of CREB3 (CREB3-CF). This accumulation disrupts the attachment of CREB3-FL to the INM, resulting in sudden rupture of the nuclear membrane and the onset of karyoptosis. Proteomic studies revealed that CREB3-CF overexpression induces a DNA damage response akin to that caused by UVB irradiation, which is associated with cellular senescence in cancer cells. These findings demonstrated that the dysregulation of CREB3-FL cleavage is a key factor in karyoptotic cell death. Consequently, these findings suggest new therapeutic strategies in cancer treatment that exploit the process of karyoptosis.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Membrana Nuclear , Proteômica , Apoptose , DNA , Membrana Nuclear/metabolismo , Humanos , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
3.
Biofabrication ; 16(2)2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38390723

RESUMO

Hydrogels are widely used as scaffold materials for constructingin vitrothree-dimensional microphysiological systems. However, their high sensitivity to various external cues hinders the development of hydrogel-laden, microscale, and high-throughput chips. Here, we have developed a long-term storable gel-laden chip composite built in a multi-well plate, which enablesin situcell encapsulation and facilitates high-throughput analysis. Through optimized chemical crosslinking and freeze-drying method (C/FD), we have achieved a high-quality of gel-laden chip composite with excellent transparency, uniform porosity, and appropriate swelling and mechanical characteristics. Besides collagen, decellularized extracellular matrix with tissue-specific biochemical compound has been applied as chip composite. As a ready-to-use platform,in situcell encapsulation within the gel has been achieved through capillary force generated during gel reswelling. The liver-mimetic chip composite, comprising HepG2 cells or primary hepatocytes, has demonstrated favorable hepatic functionality and high sensitivity in drug testing. The developed fabrication process with improved stability of gels and storability allows chip composites to be stored at a wide range of temperatures for up to 28 d without any deformation, demonstrating off-the-shelf products. Consequently, this provides an exceptionally simple and long-term storable platform that can be utilized for an efficient tissue-specific modeling and various biomedical applications.


Assuntos
Hidrogéis , Fígado , Humanos , Hidrogéis/química , Colágeno , Hepatócitos , Células Hep G2
4.
Nat Commun ; 15(1): 77, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167486

RESUMO

Research on cultured meat has primarily focused on the mass proliferation or differentiation of muscle cells; thus, the food characteristics of cultured meat remain relatively underexplored. As the quality of meat is determined by its organoleptic properties, cultured meat with similar sensory characteristics to animal-derived meat is highly desirable. In this study, we control the organoleptic and nutritional properties of cultured meat by tailoring the 2D differentiation of primary bovine myoblasts and primary bovine adipose-derived mesenchymal stem cells on gelatin/alginate scaffolds with varying stiffness. We assess the effect of muscle and adipose differentiation quality on the sensory properties of cultured meat. Thereafter, we fabricate cultured meat with similar sensory profiles to that of conventional beef by assembling the muscle and adipose constructs composed of highly differentiated cells. We introduce a strategy to produce cultured meat with enriched food characteristics by regulating cell differentiation with scaffold engineering.


Assuntos
Células-Tronco Mesenquimais , Alicerces Teciduais , Animais , Bovinos , Células Cultivadas , Carne in vitro , Diferenciação Celular
5.
Biochem Biophys Res Commun ; 589: 197-203, 2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-34922203

RESUMO

Protein extraction and digestion are important analytical steps in the study of proteomics. The use of sodium dodecyl sulfate (SDS) buffer makes it possible to effectively analyze various proteins. Its use was evaluated using the S-Trap digestion method and compared to the traditional In solution digestion method. Differences in protein composition were examined for each protein preparation method. S-Trap digestion followed by SDS buffer extraction clearly increased the number of identified proteins, including more mitochondrial and membrane-related proteins. The S-Trap digestion method with 5% SDS buffer was applied to the pellet remaining from the removal of RIPA buffer-soluble proteins, which identified more extracellular space proteins than the conventional S-Trap digestion method. S-Trap digestion of the pellet was particularly advantageous for identifying proteins located inside multilayer membranes.


Assuntos
Proteínas/metabolismo , Proteômica/métodos , Animais , Linhagem Celular Tumoral , Espectrometria de Massas , Camundongos , Peptídeos/metabolismo , Soluções
6.
Pharmaceutics ; 13(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34959352

RESUMO

Cancer has been identified as a leading cause of death worldwide, and the increasing number of cancer cases threatens to shorten the average life expectancy of people. Recently, we reported a 3-azido-3-deoxythymidine (AZT)-based amphipathic small molecule, ADG-2e that revealed a notable potency against tumor metastasis. To evaluate the anticancer potential of ADG-2e, we assessed its anticancer potency in vitro and in vivo. Anticancer screening of ADG-2e against cervical cancer cells, HeLa CCL2, and BT549 mammary gland ductal carcinoma showed significant inhibition of cancer cell proliferation. Furthermore, mechanistic investigations revealed that cancer cell death presumably proceeded through an oncosis mechanistic pathway because ADG-2e treated cells showed severe damage on the plasma membrane, a loss of membrane integrity, and leakage of α-tubulin and ß-actin. Finally, evaluation of the antitumorigenic potential of ADG-2e in mouse xenograft models revealed that this compound potentially inhibits cancer cell proliferation. Collectively, these findings suggest that ADG-2e can evolve as an anticancer agent, which may represent a model for nucleoside-based small molecule anticancer drug discovery.

7.
Cancers (Basel) ; 13(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200450

RESUMO

Breast cancer is one of the most common malignant diseases worldwide. Astrocyte elevated gene-1 (AEG-1) is upregulated in breast cancer and regulates breast cancer cell proliferation and invasion. However, the molecular mechanisms by which AEG-1 promotes breast cancer have yet to be fully elucidated. In order to delineate the function of AEG-1 in breast cancer development, we mapped the AEG-1 interactome via affinity purification followed by LC-MS/MS. We identified nucleolin (NCL) as a novel AEG-1 interacting protein, and co-immunoprecipitation experiments validated the interaction between AEG-1 and NCL in breast cancer cells. The silencing of NCL markedly reduced not only migration/invasion, but also the proliferation induced by the ectopic expression of AEG-1. Further, we found that the ectopic expression of AEG-1 induced the tyrosine phosphorylation of c-Met, and NCL knockdown markedly reduced this AEG-1 mediated phosphorylation. Taken together, our report identifies NCL as a novel mediator of the oncogenic function of AEG-1, and suggests that c-Met could be associated with the oncogenic function of the AEG-1-NCL complex in the context of breast cancer.

8.
Cell Mol Life Sci ; 78(7): 3725-3741, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33687501

RESUMO

Protein arginylation is a critical regulator of a variety of biological processes. The ability to uncover the global arginylation pattern and its associated signaling pathways would enable us to identify novel disease targets. Here, we report the development of a tool able to capture the N-terminal arginylome. This tool, termed R-catcher, is based on the ZZ domain of p62, which was previously shown to bind N-terminally arginylated proteins. Mutating the ZZ domain enhanced its binding specificity and affinity for Nt-Arg. R-catcher pulldown coupled to LC-MS/MS led to the identification of 59 known and putative arginylated proteins. Among these were a subgroup of novel ATE1-dependent arginylated ER proteins that are linked to diverse biological pathways, including cellular senescence and vesicle-mediated transport as well as diseases, such as Amyotrophic Lateral Sclerosis and Alzheimer's disease. This study presents the first molecular tool that allows the unbiased identification of arginylated proteins, thereby unlocking the arginylome and provide a new path to disease biomarker discovery.


Assuntos
Aminoaciltransferases/metabolismo , Arginina/metabolismo , Retículo Endoplasmático/metabolismo , Vetores Genéticos/genética , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional , Aminoaciltransferases/química , Aminoaciltransferases/genética , Arginina/química , Arginina/genética , Células HeLa , Humanos , Proteínas de Membrana/genética , Especificidade por Substrato
9.
Int J Mol Sci ; 21(23)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291786

RESUMO

Dasatinib is a multi-target kinase inhibitor, whose targets include BCR-ABL, SRC family kinases, and various cancer kinases. The elevated SRC activity in gastric cancer (GC) has prompted the need for the therapeutic application of dasatinib in GC. We observed that the efficacy of dasatinib varied with the GC cell lines. The differential effect of dasatinib was not correlated with the basal SRC activity of each cell line. Moreover, the GC cell lines showing the strong antitumor effects of dasatinib were refractory to other SRC inhibitors, i.e., bosutinib and saracatinib, suggesting that unexpected dasatinib's targets could exist. To profile the targets of dasatinib in GC, we performed activity-based protein profiling (ABPP) via mass spectrometry using a desthiobiotin-ATP probe. We identified 29 and 18 kinases as potential targets in dasatinib-sensitive (SNU-216, MKN-1) and -resistant (SNU-484, SNU-601) cell lines, respectively. The protein-protein interaction mapping of the differential drug targets in dasatinib-sensitive and -resistant GC using the STRING database suggested that dasatinib could target cellular energy homeostasis in the drug-sensitive GC. RNAi screening for identified targets indicated p90RSK could be a novel dasatinib target, which is important for maintaining the viability and motility of GC cells. Further functional validation of dasatinib off-target actions will provide more effective therapeutic options for GC.


Assuntos
Biomarcadores Tumorais/metabolismo , Dasatinibe/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteoma , Proteômica , Neoplasias Gástricas/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Dasatinibe/uso terapêutico , Humanos , Terapia de Alvo Molecular , Fenótipo , Inibidores de Proteínas Quinases/uso terapêutico , Proteômica/métodos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Espectrometria de Massas em Tandem
10.
J Med Chem ; 63(23): 14905-14920, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33142063

RESUMO

Polo-like kinase-1 (Plk1) plays a key role in mitosis and has been identified as an attractive anticancer drug target. Plk1 consists of two drug-targeting sites, namely, N-terminal kinase domain (KD) and C-terminal polo-box domain (PBD). As KD-targeting inhibitors are associated with severe side effects, here we report on the pyrazole-based Plk1 PBD inhibitor, KBJK557, which showed a remarkable in vitro anticancer effect by inducing Plk1 delocalization, mitotic arrest, and apoptosis in HeLa cells. Further, in vivo optical imaging analysis and antitumorigenic activities in mouse xenograft models demonstrate that KBJK557 preferentially accumulates in cancer cells and selectively inhibits cancer cell proliferation. Pharmacokinetic profiles and partition coefficients suggest that KBJK557 was exposed in the blood and circulated through the organs with an intermediate level of clearance (t1/2, 7.73 h). The present investigation offers a strategy for specifically targeting cancer using a newly identified small-molecule inhibitor that targets the Plk1 PBD.


Assuntos
Antineoplásicos/uso terapêutico , Barbitúricos/uso terapêutico , Proteínas de Ciclo Celular/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Barbitúricos/síntese química , Barbitúricos/metabolismo , Barbitúricos/farmacocinética , Carbocianinas/química , Proteínas de Ciclo Celular/metabolismo , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Corantes Fluorescentes/química , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HeLa , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Estrutura Molecular , Neoplasias/diagnóstico , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase 1 Polo-Like
11.
Front Immunol ; 10: 183, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863394

RESUMO

Myeloid-derived suppressor cells (MDSCs) are increased in tumor patients. Studies have shown generation of MDSCs from human peripheral blood mononuclear cells (PBMCs) by various cytokine combinations. However, large scale expansion of human MDSCs has not been demonstrated or applied in clinic settings. We investigated which cytokine combinations among GM-CSF/SCF, G-CSF/SCF, or M-CSF/SCF efficiently expand and differentiate human MDSCs following culture CD34+ cells of umbilical cord blood (CB). GM-CSF/SCF showed the greatest expansion of MDSCs. Up to 108 MDSCs (HLA-DRlowCD11b+CD33+) could be produced from 1 unit of CB following 6 weeks of continuous culture. MDSCs produced from culture of CD34+ cells with GM-CSF/SCF for 6 weeks had the greatest suppressive function of T cell proliferation and had the highest expression of immunosuppressive molecules including iNOS, arginase 1 and IDO compared to those differentiated with G-CSF/SCF or M-CSF/SCF. MDSCs secreted IL-10, TGB-ß, and VEGF. The infusion of expanded MDSCs significantly prolonged the survival and decreased the GVHD score in a NSG xenogeneic model of GVHD. Injected MDSCs increased IL-10 and TGF-ß but decreased the level of TNF-α and IL-6 in the serum of treated mice. Notably, FoxP3 expressing regulatory T (Treg) cells were increased while IFN-γ (Th1) and IL-17 (Th17) producing T cells were decreased in the spleen of MDSC treated mice compared to untreated GVHD mice. Our results demonstrate that human MDSCs are generated from CB CD34+ cells using GM-CSF/SCF. These MDSCs exhibited potent immunosuppressive function, suggesting that they are useable as a treatment for inflammatory diseases such as GVHD.


Assuntos
Sangue Fetal/citologia , Doença Enxerto-Hospedeiro/etiologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Células Supressoras Mieloides/citologia , Células Supressoras Mieloides/metabolismo , Animais , Biomarcadores , Diferenciação Celular/genética , Linhagem da Célula/genética , Citocinas/metabolismo , Epitopos de Linfócito T/imunologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Xenoenxertos , Humanos , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Camundongos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
12.
ChemMedChem ; 12(8): 580-589, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28296169

RESUMO

Polo-like kinase 1 (PLK1) plays crucial roles in various stages of oocyte maturation. Recently, we reported that the peptidomimetic compound AB103-8, which targets the polo box domain (PBD) of PLK1, affects oocyte meiotic maturation and the resumption of meiosis. However, to overcome the drawbacks of peptidic compounds, we designed and synthesized a series of pyrrole-based small-molecule inhibitors and tested them for their effects on the rates of porcine oocyte maturation. Among them, the macrocyclic compound (E/Z)-3-(2,16-dioxo-19-(4-phenylbutyl)-3,19-diazabicyclo[15.2.1]icosa-1(20),6,17-trien-3-yl)propyl dihydrogen phosphate (4) showed the highest inhibitory activity with enhanced inhibition against embryonic blastocyst formation. Furthermore, the addition of this compound to culture media efficiently blocked the maturation of porcine and mouse oocytes, indicating its ability to penetrate the zona pellucida and cell membrane. We investigated mouse oocytes treated with compound 4, and the resulting impairment of spindle formation confirmed PLK1 inhibition. Finally, molecular modeling studies with PLK1 PBD also confirmed the presence of significant interactions between compound 4 and PLK1 PBD binding pocket residues, including those in the phosphate, tyrosine-rich, and pyrrolidine binding pockets. Collectively, these results suggest that the macrocyclic compound 4 may serve as a promising template for the development of novel contraceptive agents.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Compostos Macrocíclicos/farmacologia , Oócitos/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pirróis/farmacologia , Animais , Compostos Azabicíclicos/farmacologia , Permeabilidade da Membrana Celular , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Oligopeptídeos/farmacologia , Organofosfatos/síntese química , Organofosfatos/farmacologia , Domínios Proteicos , Pirróis/síntese química , Pirróis/metabolismo , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/fisiologia , Suínos , Zona Pelúcida/efeitos dos fármacos , Zona Pelúcida/fisiologia , Quinase 1 Polo-Like
13.
Eur J Med Chem ; 125: 551-564, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27718471

RESUMO

In this study, we report on the first chemical synthesis of ultra-short pyrazole-arginine based antimicrobial peptidomimetics derived from the newly synthesized N-alkyl/aryl pyrazole amino acids. Through the systematic tuning of hydrophobicity, charge, and peptide length, we identified the shortest peptide Py11 with the most potent antimicrobial activity. Py11 displayed greater antimicrobial activity against antibiotic-resistant bacteria, including MRSA, MDRPA, and VREF, which was approximately 2-4 times higher than that of melittin. Besides its higher selectivity (therapeutic index) toward bacterial cells than LL-37, Py11 showed highly increased proteolytic stability against trypsin digestion and maintained its antimicrobial activity in the presence of physiological salts. Interestingly, Py11 exhibited higher anti-biofilm activity against MDRPA compared to LL-37. The results from fluorescence spectroscopy and transmission electron microscopy (TEM) suggested that Py11 kills bacterial cells possibly by integrity disruption damaging the cell membrane, leading to the cytosol leakage and eventual cell lysis. Furthermore, Py11 displayed significant anti-inflammatory (endotoxin-neutralizing) activity by inhibiting LPS-induced production of nitric oxide (NO) and TNF-α. Collectively, our results suggest that Py11 may serve as a model compound for the design of antimicrobial and antisepsis agents.


Assuntos
Peptídeos Catiônicos Antimicrobianos/síntese química , Biofilmes/efeitos dos fármacos , Peptidomiméticos/química , Pirazóis/síntese química , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Humanos , Macrófagos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Peptidomiméticos/síntese química , Peptidomiméticos/farmacologia , Reação em Cadeia da Polimerase , Pirazóis/química , Pirazóis/farmacologia
15.
J Biol Chem ; 290(41): 25103-17, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26306031

RESUMO

Helicobacter pylori causes gastrointestinal diseases, including gastric cancer. Its high motility in the viscous gastric mucosa facilitates colonization of the human stomach and depends on the helical cell shape and the flagella. In H. pylori, Csd6 is one of the cell shape-determining proteins that play key roles in alteration of cross-linking or by trimming of peptidoglycan muropeptides. Csd6 is also involved in deglycosylation of the flagellar protein FlaA. To better understand its function, biochemical, biophysical, and structural characterizations were carried out. We show that Csd6 has a three-domain architecture and exists as a dimer in solution. The N-terminal domain plays a key role in dimerization. The middle catalytic domain resembles those of l,d-transpeptidases, but its pocket-shaped active site is uniquely defined by the four loops I to IV, among which loops I and III show the most distinct variations from the known l,d-transpeptidases. Mass analyses confirm that Csd6 functions only as an l,d-carboxypeptidase and not as an l,d-transpeptidase. The d-Ala-complexed structure suggests possible binding modes of both the substrate and product to the catalytic domain. The C-terminal nuclear transport factor 2-like domain possesses a deep pocket for possible binding of pseudaminic acid, and in silico docking supports its role in deglycosylation of flagellin. On the basis of these findings, it is proposed that H. pylori Csd6 and its homologs constitute a new family of l,d-carboxypeptidase. This work provides insights into the function of Csd6 in regulating the helical cell shape and motility of H. pylori.


Assuntos
Carboxipeptidases/metabolismo , Forma Celular , Helicobacter pylori/citologia , Helicobacter pylori/enzimologia , Sequência de Aminoácidos , Carboxipeptidases/química , Domínio Catalítico , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Multimerização Proteica , Açúcares Ácidos/metabolismo
17.
J Mass Spectrom ; 49(5): 409-16, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24809902

RESUMO

Histopathologic diagnosis of renal cell carcinoma (RCC) may sometimes be difficult with small biopsy samples. We applied histology-directed matrix-assisted laser desorption/ionization mass spectrometry to RCC samples to evaluate whether and how lipid profiles are different between RCC and normal tissue. We evaluated 59 RCC samples and 24 adjacent normal tissue samples collected from patients who underwent surgery. Five peaks were significantly differently expressed (p < 10(-7)) between RCCs and adjacent normal tissue samples. C24-OH sulfatide (ST-OH {18:1/24:0}[M-H](-); m/z 906.7 in the negative ion mode) and C22-OH sulfatide (ST-OH {18:1/22:0}[M-H](-); m/z 878.6 in the negative ion mode) were most significantly underexpressed in RCC samples, compared with adjacent normal tissue samples. With 100 random training-to-test partitions within these samples, the median prediction accuracy (RCC vs. normal) ranged from 96.3% to 100% at p cutoff values for feature selection ranging from 0.001 to 10(-7). Two oncocytoma samples were predicted as normal tissue by five lipids that were differentially expressed between RCC and normal tissue at p < 10(-7). Clear-cell, papillary, and chromophobe RCCs were different in lipid profiles. Permutation p- values for 0.632+ bootstrap cross-validated misclassification rates were less than 0.05 for all the classifiers. Thus, lipid profiles differentiate RCC from normal tissue and may possibly classify the histology of RCC.


Assuntos
Carcinoma de Células Renais/química , Rim/química , Sulfoglicoesfingolipídeos/análise , Sulfoglicoesfingolipídeos/química , Adulto , Idoso , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/cirurgia , Feminino , Humanos , Rim/metabolismo , Rim/cirurgia , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
Anticancer Res ; 33(6): 2467-72, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23749897

RESUMO

BACKGROUND: Accumulating data indicate that human epidermal growth factor receptor-2 (HER2)-positive breast cancer is a heterogeneous disease. We undertook a study to correlate lipid profiles with heterogeneous clinicopathological features of HER2-positive breast cancer. MATERIALS AND METHODS: Histology-directed matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry (MS) analyses were performed on 22 retrospective frozen tissue samples collected from patients with HER2-positive metastatic breast cancer, in order to correlate lipid profiles with clinicopathological characteristics. Additionally, a pair of tumor and adjacent normal tissue was profiled to identify cancer-associated changes in lipid profiles. RESULTS: Sphingomyelin 34:1, phosphatidylcholine (PC) 32:0, and PC 34:1, and PC 36:2 were overexpressed in HER2-positive breast cancer compared to adjacent normal tissue (HER2 signature). Lipid MALDI-MS profiles were different between Ki-67-high and Ki-67-low tumors. The proliferation signature (Ki-67-high vs. Ki-67-low) and the HER2 signature (cancer vs. normal) did not significantly overlap with each other. CONCLUSION: For the first time to our knowledge, this study describes lipid profiles correlated with various clinicopathological characteristics of HER2-positive breast cancer. Lipid profiling might be helpful for the molecular characterization of this disease.


Assuntos
Neoplasias da Mama/metabolismo , Antígeno Ki-67/metabolismo , Lipídeos/análise , Fosfatidilcolinas/metabolismo , Esfingomielinas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Feminino , Humanos , Metabolismo dos Lipídeos , Pessoa de Meia-Idade , Receptor ErbB-2/metabolismo , Estudos Retrospectivos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
19.
Mol Biotechnol ; 32(2): 93-100, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16444010

RESUMO

A protocol has been developed to produce a cholera toxin B subunit (CTB) in tobacco tolerant to the herbicide phosphinothricin (PPT) by means of in vitro selection. The synthetic CTB subunit gene was altered to modify the codon usage to that of tobacco plant genes. The gene was then cloned into a plant expression vector and was under the control of the ubiquitin promoter and transformed into tobacco plants by Agrobacterium-mediated transformation. Transgenic plantlets were selected in a medium supplemented with 5 mg/L PPT. Polymerase chain reaction analysis confirmed stable integration of the synthetic CTB gene into a chromosomal DNA. A high level of CTB (1.8% of total soluble protein) was expressed in transgenic plants, which was 18-fold higher than that under the control of the expressed CaMV 35S promoter with native gene. The transgenic plants when transferred to a greenhouse proved to be resistant to 2% PPT.


Assuntos
Toxina da Cólera/genética , Toxina da Cólera/metabolismo , Genes de Plantas , Nicotiana/metabolismo , Regiões Promotoras Genéticas , Toxina da Cólera/química , Expressão Gênica , Marcadores Genéticos , Vetores Genéticos , Técnicas In Vitro , Plantas Geneticamente Modificadas , Rhizobium/genética , Seleção Genética , Nicotiana/genética , Transformação Genética , Transgenes , Ubiquitina/genética
20.
Mol Cells ; 22(3): 291-9, 2006 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-17202857

RESUMO

Vitexin, a natural flavonoid compound identified as apigenin-8-C-b-D-glucopyranoside, has been reported to exhibit antioxidative and anti-inflammatory properties. In this study, we investigated its effect on hypoxia-inducible factor-1a (HIF-1a) in rat pheochromacytoma (PC12), human osteosarcoma (HOS) and human hepatoma (HepG2) cells. Vitexin inhibited HIF-1a in PC12 cells, but not in HOS or HepG2 cells. In addition, it diminished the mRNA levels of hypoxia-inducible genes such as vascular endothelial growth factor (VEGF), smad3, aldolase A, enolase 1, and collagen type III in the PC12 cells. We found that vitexin inhibited the migration of PC12 cells as well as their invasion rates, and it also inhibited tube formation by human umbilical vein endothelium cells (HUVECs). Interestingly, vitexin inhibited the hypoxia-induced activation of c-jun N-terminal kinase (JNK), but not of extracellular-signal regulated protein kinase (ERK), implying that it acts in part via the JNK pathway. Overall, these results suggest the potential use of vitexin as a treatment for diseases such as cancer.


Assuntos
Apigenina/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Metástase Neoplásica , Animais , Apigenina/toxicidade , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Invasividade Neoplásica , Neovascularização Patológica/metabolismo , Células PC12 , Ratos , Transcrição Gênica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA