Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Med Virol ; 95(12): e29309, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38100632

RESUMO

The E6 and E7 proteins of specific subtypes of human papillomavirus (HPV), including HPV 16 and 18, are highly associated with cervical cancer as they modulate cell cycle regulation. The aim of this study was to investigate the potential antitumor effects of a messenger RNA-HPV therapeutic vaccine (mHTV) containing nononcogenic E6 and E7 proteins. To achieve this, C57BL/6j mice were injected with the vaccine via both intramuscular and subcutaneous routes, and the resulting effects were evaluated. mHTV immunization markedly induced robust T cell-mediated immune responses and significantly suppressed tumor growth in both subcutaneous and orthotopic tumor-implanted mouse model, with a significant infiltration of immune cells into tumor tissues. Tumor retransplantation at day 62 postprimary vaccination completely halted progression in all mHTV-treated mice. Furthermore, tumor expansion was significantly reduced upon TC-1 transplantation 160 days after the last immunization. Immunization of rhesus monkeys with mHTV elicited promising immune responses. The immunogenicity of mHTV in nonhuman primates provides strong evidence for clinical application against HPV-related cancers in humans. All data suggest that mHTV can be used as both a therapeutic and prophylactic vaccine.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , Animais , Camundongos , Papillomavirus Humano , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/prevenção & controle , RNA Mensageiro/genética , Proteínas E7 de Papillomavirus/genética , Camundongos Endogâmicos C57BL , Vacinação/métodos , Imunização , Neoplasias do Colo do Útero/prevenção & controle
2.
Sci Rep ; 13(1): 8189, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210393

RESUMO

Severe fever with thrombocytopenia syndrome virus was first discovered in 2009 as the causative agent of severe fever with thrombocytopenia syndrome. Despite its potential threat to public health, no prophylactic vaccine is yet available. This study developed a heterologous prime-boost strategy comprising priming with recombinant replication-deficient human adenovirus type 5 (rAd5) expressing the surface glycoprotein, Gn, and boosting with Gn protein. This vaccination regimen induced balanced Th1/Th2 immune responses and resulted in potent humoral and T cell-mediated responses in mice. It elicited high neutralizing antibody titers in both mice and non-human primates. Transcriptome analysis revealed that rAd5 and Gn proteins induced adaptive and innate immune pathways, respectively. This study provides immunological and mechanistic insight into this heterologous regimen and paves the way for future strategies against emerging infectious diseases.


Assuntos
Adenovírus Humanos , Febre Grave com Síndrome de Trombocitopenia , Vacinas Virais , Animais , Camundongos , Vacinas Virais/genética , Vacinação/métodos , Linfócitos T , Vetores Genéticos/genética , Anticorpos Antivirais , Imunização Secundária/métodos
3.
BMC Cancer ; 22(1): 1041, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199130

RESUMO

BACKGROUND: Adjuvant therapies such as radiation therapy, chemotherapy, and immunotherapy are usually given after cancer surgery to improve the survival of cancer patients. However, despite advances in several adjuvant therapies, they are still limited in the prevention of recurrences. METHODS: We evaluated the immunological effects of RNA-based adjuvants in a murine melanoma model. Single-stranded RNA (ssRNA) were constructed based on the cricket paralysis virus (CrPV) internal ribosome entry site (IRES). Populations of immune cells in bone marrow cells and lymph node cells following immunization with CrPVIRES-ssRNA were determined using flow cytometry. Activated cytokine levels were measured using ELISA and ELISpot. The tumor protection efficacy of CrPVIRES-ssRNA was analyzed based on any reduction in tumor size or weight, and overall survival. RESULTS: CrPVIRES-ssRNA treatment stimulated antigen-presenting cells in the drain lymph nodes associated with activated antigen-specific dendritic cells. Next, we evaluated the expression of CD40, CD86, and XCR1, showing that immunization with CrPVIRES-ssRNA enhanced antigen presentation by CD8a+ conventional dendritic cell 1 (cDC1), as well as activated antigen-specific CD8 T cells. In addition, CrPVIRES-ssRNA treatment markedly increased the frequency of antigen-specific CD8 T cells and interferon-gamma (IFN-γ) producing cells, which promoted immune responses and reduced tumor burden in melanoma-bearing mice. CONCLUSIONS: This study provides evidence that the CrPVIRES-ssRNA adjuvant has potential for use in therapeutic cancer vaccines. Moreover, CrPVIRES-ssRNA possesses protective effects on various cancer cell models.


Assuntos
Vacinas Anticâncer , Melanoma , Adjuvantes Imunológicos , Animais , Vacinas Anticâncer/uso terapêutico , Imunoterapia , Interferon gama/genética , Sítios Internos de Entrada Ribossomal , Melanoma/genética , Melanoma/terapia , Camundongos , RNA Viral/genética
4.
Microbiol Immunol ; 66(11): 529-537, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35979884

RESUMO

Following the development of various types of vaccines, the use of adjuvants to boost vaccine efficacy has become a focus of research. Aluminum hydroxide (alum), the most commonly used adjuvant, induces a certain immune response and ensures safety in human trials. However, alum mainly induces only a Th2 response; its Th1 response is weak. Thus, we previously developed a single-stranded ribose nucleic acid (ssRNA) adjuvant that induces a Th1 response through toll-like receptors. Here, we explored whether 10-valent human papilloma virus (HPV)-like particle (VLP) vaccine formulated with ssRNA adjuvant and alum helped to enhance immune response and maintained memory response. The mice were immunized intramuscularly twice at 2 week intervals and were inoculated 4 days after the second boost (after about 1 year). The antibody response and T cell activation were measured by Elispot, ELISA using harvested serum and splenocytes. The 10-valent HPV VLP vaccine formulated with ssRNA adjuvant and alum increased the antigen-specific immune response more than alum used alone. It increased each type-specific IgG1/IgG2a titer, and antigen-specific IFN-γ cells. Furthermore, the ssRNA adjuvant with alum induced memory response. In memory response, each type-specific IgG1/IgG2c, IFN-γ, and IL-6 cytokine, and neutralizing antibodies were increased by the ssRNA adjuvant with alum. Overall, the ssRNA adjuvant with alum induced memory responses and balanced Th1/Th2 responses. The ssRNA adjuvant and alum may help to enhance prophylactic vaccine efficacy.


Assuntos
Alphapapillomavirus , Papiloma , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Vacinas de Partículas Semelhantes a Vírus , Humanos , Camundongos , Animais , Papillomaviridae , Infecções por Papillomavirus/prevenção & controle , Adjuvantes Imunológicos/farmacologia , Imunoglobulina G , RNA , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA