Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Enzymol ; 686: 67-97, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37532409

RESUMO

Regulated protein degradation controls protein levels of all short-lived proteins to ensure cellular homeostasis and also protects cells from misfolded or other abnormal proteins. The most important players in the degradation system are E3 ubiquitin ligases which recognize exposed sequence motifs, so-called degrons, of target proteins and mark them through the attachment of ubiquitin for degradation. N-terminal (Nt) sequences are extensively used as degrons (N-degrons) and all 20 amino acids are able to feed proteins in 1 of the 5 known N-degron pathways. Studies have mainly focused on characterizing systematically the role of the starting amino acid on protein stability and less on the identification of the E3 ligases involved. Recent data from our lab and literature suggest that there is an extensive interplay of N-recognins and Nt-modifying enzymes like Nt-acetyltransferases (NATs) or N-myristoyltransferases which only starts to be elucidated. It suggests that improperly modified or unexpectedly unmodified proteins become rapidly removed after synthesis ensuring protein maturation and quality control of specific subsets of proteins. Here, we describe a peptide pull-down and down-stream bioinformatics workflow conducted in the MaxQuant and Perseus computational environment to identify N-recognin candidates in an unbiased way using quantitative mass spectrometry (MS)-based proteomics. Our workflow allows the identification of N-recognin candidates for specific N-degrons, to determine their sequence specificity and it can be applied as well more general to identify binding partners of N-terminal modifications. This method paves the way to identify pathways involved in protein quality control and stability acting at the N-terminus.


Assuntos
Peptídeos , Ubiquitina-Proteína Ligases , Peptídeos/química , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Espectrometria de Massas
2.
Nucleic Acids Res ; 51(9): 4363-4384, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36942481

RESUMO

Crossing over between homologs is critical for the stable segregation of chromosomes during the first meiotic division. Saccharomyces cerevisiae Mer3 (HFM1 in mammals) is a SF2 helicase and member of the ZMM group of proteins, that facilitates the formation of the majority of crossovers during meiosis. Here, we describe the structural organisation of Mer3 and using AlphaFold modelling and XL-MS we further characterise the previously described interaction with Mlh1-Mlh2. We find that Mer3 also forms a previously undescribed complex with the recombination regulating factors Top3 and Rmi1 and that this interaction is competitive with Sgs1BLM helicase. Using in vitro reconstituted D-loop assays we show that Mer3 inhibits the anti-recombination activity of Sgs1 helicase, but only in the presence of Dmc1. Thus we provide a mechanism whereby Mer3 interacts with a network of proteins to protect Dmc1 derived D-loops from dissolution.


Assuntos
DNA Helicases , Recombinação Homóloga , Meiose , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Troca Genética , DNA Helicases/química , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Meiose/genética , Ligação Proteica , Dobramento de Proteína , RecQ Helicases/antagonistas & inibidores , RecQ Helicases/química , RecQ Helicases/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ligação Competitiva
3.
Mol Cell ; 81(1): 67-87.e9, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33248027

RESUMO

Reflecting its pleiotropic functions, Polo-like kinase 1 (PLK1) localizes to various sub-cellular structures during mitosis. At kinetochores, PLK1 contributes to microtubule attachments and mitotic checkpoint signaling. Previous studies identified a wealth of potential PLK1 receptors at kinetochores, as well as requirements for various mitotic kinases, including BUB1, Aurora B, and PLK1 itself. Here, we combine ectopic localization, in vitro reconstitution, and kinetochore localization studies to demonstrate that most and likely all of the PLK1 is recruited through BUB1 in the outer kinetochore and centromeric protein U (CENP-U) in the inner kinetochore. BUB1 and CENP-U share a constellation of sequence motifs consisting of a putative PP2A-docking motif and two neighboring PLK1-docking sites, which, contingent on priming phosphorylation by cyclin-dependent kinase 1 and PLK1 itself, bind PLK1 and promote its dimerization. Our results rationalize previous observations and describe a unifying mechanism for recruitment of PLK1 to human kinetochores.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Histonas/metabolismo , Cinetocoros/metabolismo , Mitose , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína Quinase CDC2/genética , Proteínas de Ciclo Celular/genética , Células HeLa , Histonas/genética , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Quinase 1 Polo-Like
4.
J Cell Biol ; 219(3)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31913420

RESUMO

The spindle assembly checkpoint (SAC) relies on the recruitment of Mad1-C-Mad2 to unattached kinetochores but also on its binding to Megator/Tpr at nuclear pore complexes (NPCs) during interphase. However, the molecular underpinnings controlling the spatiotemporal redistribution of Mad1-C-Mad2 as cells progress into mitosis remain elusive. Here, we show that activation of Mps1 during prophase triggers Mad1 release from NPCs and that this is required for kinetochore localization of Mad1-C-Mad2 and robust SAC signaling. We find that Mps1 phosphorylates Megator/Tpr to reduce its interaction with Mad1 in vitro and in Drosophila cells. Importantly, preventing Mad1 from binding to Megator/Tpr restores Mad1 accumulation at kinetochores, the fidelity of chromosome segregation, and genome stability in larval neuroblasts of mps1-null mutants. Our findings demonstrate that the subcellular localization of Mad1 is tightly coordinated with cell cycle progression by kinetochore-extrinsic activity of Mps1. This ensures that both NPCs in interphase and kinetochores in mitosis can generate anaphase inhibitors to efficiently preserve genomic stability.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Cromossomos de Insetos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Cinetocoros/metabolismo , Mitose , Células-Tronco Neurais/metabolismo , Poro Nuclear/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Ativo do Núcleo Celular , Aneuploidia , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Células HeLa , Humanos , Interfase , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Poro Nuclear/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Tempo
5.
EMBO J ; 39(2): e100789, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31849090

RESUMO

Accurate chromosome segregation in mitosis requires sister kinetochores to bind to microtubules from opposite spindle poles. The stability of kinetochore-microtubule attachments is fine-tuned to prevent or correct erroneous attachments while preserving amphitelic interactions. Polo kinase has been implicated in both stabilizing and destabilizing kinetochore-microtubule attachments. However, the mechanism underlying Polo-destabilizing activity remains elusive. Here, resorting to an RNAi screen in Drosophila for suppressors of a constitutively active Polo mutant, we identified a strong genetic interaction between Polo and the Rod-ZW10-Zwilch (RZZ) complex, whose kinetochore accumulation has been shown to antagonize microtubule stability. We find that Polo phosphorylates Spindly and impairs its ability to bind to Zwilch. This precludes dynein-mediated removal of the RZZ from kinetochores and consequently delays the formation of stable end-on attachments. We propose that high Polo-kinase activity following mitotic entry directs the RZZ complex to minimize premature stabilization of erroneous attachments, whereas a decrease in active Polo in later mitotic stages allows the formation of stable amphitelic spindle attachments. Our findings demonstrate that Polo tightly regulates the RZZ-Spindly-dynein module during mitosis to ensure the fidelity of chromosome segregation.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitose , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático , Animais , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Dineínas/metabolismo , Feminino , Cinetocoros/química , Masculino , Microtúbulos/química , Transdução de Sinais
6.
Angew Chem Int Ed Engl ; 57(35): 11164-11170, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-29847004

RESUMO

Increased tolerance of enzymes towards thermal and chemical stress is required for many applications and can be achieved by macrocyclization of the enzyme resulting in the stabilizing of its tertiary structure. Thus far, macrocyclization approaches utilize a very limited structural diversity, which complicates the design process. Herein, we report an approach that enables cyclization through the installation of modular crosslinks into native proteins composed entirely of proteinogenic amino acids. Our stabilization procedure involves the introduction of three surface-exposed cysteine residues, which are reacted with a triselectrophile, resulting in the in situ cyclization of the protein (INCYPRO). A bicyclic version of sortase A was designed that exhibits increased tolerance towards thermal as well as chemical denaturation, and proved to be efficient in protein labeling under denaturing conditions. In addition, we applied INCYPRO to the KIX domain, resulting in up to 24 °C increased thermal stability.


Assuntos
Aminoaciltransferases/química , Proteínas de Bactérias/química , Reagentes de Ligações Cruzadas/química , Cisteína Endopeptidases/química , Cisteína/química , Staphylococcus aureus/enzimologia , Animais , Ciclização , Estabilidade Enzimática , Humanos , Modelos Moleculares , Conformação Proteica , Desnaturação Proteica , Domínios Proteicos , Staphylococcus aureus/química , Temperatura
7.
Cell Chem Biol ; 24(8): 958-968.e5, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28757184

RESUMO

The Wnt signaling pathway plays a critical role in cell proliferation and differentiation, thus it is often associated with diseases such as cancers. Unfortunately, although attractive, developing anti-cancer strategy targeting Wnt signaling has been challenging given that the most attractive targets are involved in protein-protein interactions (PPIs). Here, we develop a stapled peptide inhibitor that targets the interaction between ß-catenin and T cell factor/lymphoid enhancer-binding factor transcription factors, which are crucially involved in Wnt signaling. Our integrative approach combines peptide stapling to optimize proteolytic stability, with lessons learned from cell-penetrating peptide (CPP) design to maximize cellular uptake resulting in NLS-StAx-h, a selective, cell permeable, stapled peptide inhibitor of oncogenic Wnt signaling that efficiently inhibits ß-catenin-transcription factor interactions. We expect that this type of integrative strategy that endows stapled peptides with CPP features will be generally useful for developing inhibitors of intracellular PPIs.


Assuntos
Peptídeos Penetradores de Células/metabolismo , beta Catenina/metabolismo , Sequência de Aminoácidos , Proteína Axina/genética , Proteína Axina/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Expressão Gênica/efeitos dos fármacos , Genes Reporter , Células HeLa , Humanos , Microscopia Confocal , Domínios e Motivos de Interação entre Proteínas , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/antagonistas & inibidores
8.
J Cell Biol ; 216(4): 961-981, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28320825

RESUMO

Kinetochores are macromolecular assemblies that connect chromosomes to spindle microtubules (MTs) during mitosis. The metazoan-specific ≈800-kD ROD-Zwilch-ZW10 (RZZ) complex builds a fibrous corona that assembles on mitotic kinetochores before MT attachment to promote chromosome alignment and robust spindle assembly checkpoint signaling. In this study, we combine biochemical reconstitutions, single-particle electron cryomicroscopy, cross-linking mass spectrometry, and structural modeling to build a complete model of human RZZ. We find that RZZ is structurally related to self-assembling cytosolic coat scaffolds that mediate membrane cargo trafficking, including Clathrin, Sec13-Sec31, and αß'ε-COP. We show that Spindly, a dynein adaptor, is related to BicD2 and binds RZZ directly in a farnesylation-dependent but membrane-independent manner. Through a targeted chemical biology approach, we identify ROD as the Spindly farnesyl receptor. Our results suggest that RZZ is dynein's cargo at human kinetochores.


Assuntos
Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Fuso Acromático/fisiologia , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Dineínas/metabolismo , Células HeLa , Humanos , Cinetocoros/fisiologia , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Microtúbulos/metabolismo , Mitose/fisiologia , Transporte Proteico/fisiologia
9.
Nature ; 542(7642): 498-502, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28102834

RESUMO

In mitosis, for each daughter cell to inherit an accurate copy of the genome from the mother cell, sister chromatids in the mother cell must attach to microtubules emanating from opposite poles of the mitotic spindle, a process known as bi-orientation. A surveillance mechanism, termed the spindle assembly checkpoint (SAC), monitors the microtubule attachment process and can temporarily halt the separation of sister chromatids and the completion of mitosis until bi-orientation is complete. SAC failure results in abnormal chromosome numbers, termed aneuploidy, in the daughter cells, a hallmark of many tumours. The HORMA-domain-containing protein mitotic arrest deficient 2 (MAD2) is a subunit of the SAC effector mitotic checkpoint complex (MCC). Structural conversion from the open to the closed conformation of MAD2 is required for MAD2 to be incorporated into the MCC. In vitro, MAD2 conversion and MCC assembly take several hours, but in cells the SAC response is established in a few minutes. Here, to address this discrepancy, we reconstituted a near-complete SAC signalling system with purified components and monitored assembly of the MCC in real time. A marked acceleration in MAD2 conversion and MCC assembly was observed when monopolar spindle 1 (MPS1) kinase phosphorylated the MAD1-MAD2 complex, triggering it to act as the template for MAD2 conversion and therefore contributing to the establishment of a physical platform for MCC assembly. Thus, catalytic activation of the SAC depends on regulated protein-protein interactions that accelerate the spontaneous but rate-limiting conversion of MAD2 required for MCC assembly.


Assuntos
Biocatálise , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Proteínas Mad2/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Humanos , Cinética , Cinetocoros/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Proteínas Tirosina Quinases/metabolismo , Fuso Acromático/metabolismo , Fatores de Tempo
10.
Angew Chem Int Ed Engl ; 54(46): 13796-800, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26418532

RESUMO

PTEN is a dual-specificity protein tyrosine phosphatase. As one of the central tumor suppressors, a thorough regulation of its activity is essential for proper cellular homeostasis. The precise implications of PTEN inhibition by reactive oxygen species (e.g. H2 O2 ) and the subsequent structural consequences remain elusive. To study the effects of PTEN inhibition, bisperoxidovanadium (bpV) complexes serve as important tools with the potential for the treatment of nerve injury or cardiac ischemia. However, their mode of action is unknown, hampering further optimization and preventing therapeutic applications. Based on protein crystallography, mass spectrometry, and NMR spectroscopy, we elucidate the molecular basis of PTEN inhibition by H2O2 and bpV complexes. We show that both molecules inhibit PTEN via oxidative mechanisms resulting in the formation of the same intramolecular disulfide, therefore enabling the reactivation of PTEN under reductive conditions.


Assuntos
Peróxido de Hidrogênio/farmacologia , Compostos Organometálicos/farmacologia , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Peróxidos/farmacologia , Vanádio/farmacologia , Relação Dose-Resposta a Droga , Humanos , Peróxido de Hidrogênio/química , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/química , Oxirredução , PTEN Fosfo-Hidrolase/metabolismo , Peróxidos/química , Relação Estrutura-Atividade , Vanádio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA