RESUMO
Adenosine deaminases acting on RNA (ADARs) are endogenous enzymes catalyzing the deamination of adenosines to inosines, which are then read as guanosines during translation. This ability to recode makes ADAR an attractive therapeutic tool to edit genetic mutations and reprogram genetic information at the mRNA level. Using the endogenous ADARs and guiding them to a selected target has promising therapeutic potential. Indeed, different studies have reported several site-directed RNA-editing approaches for making targeted base changes in RNA molecules. The basic strategy has been to use guide RNAs (gRNAs) that hybridize and form a double-stranded RNA (dsRNA) structure with the desired RNA target because of ADAR activity in regions of dsRNA formation. Here we report on a novel pipeline for identifying disease-causing variants as candidates for RNA editing, using a yeast-based screening system to select efficient gRNAs for editing of nonsense mutations, and test them in a human cell line reporter system. We have used this pipeline to modify the sequence of transcripts carrying nonsense mutations that cause inherited retinal diseases in the FAM161A, KIZ, TRPM1, and USH2A genes. Our approach can serve as a basis for gene therapy intervention in knockin mouse models and ultimately in human patients.
RESUMO
Photoreceptor cell degeneration and death is the major hallmark of a wide group of human blinding diseases including age-related macular degeneration and inherited retinal diseases such as retinitis pigmentosa. In recent years, inherited retinal diseases have become the "testing ground" for novel therapeutic modalities, including gene and cell-based therapies. Currently there is no available treatment for retinitis pigmentosa caused by FAM161A biallelic pathogenic variants. In this study, we injected an adeno-associated virus encoding for the longer transcript of mFam161a into the subretinal space of P24-P29 Fam161a knockout mice to characterize the safety and efficacy of gene augmentation therapy. Serial in vivo assessment of retinal function and structure at 3, 6, and 8 months of age using the optomotor response test, full-field electroretinography, fundus autofluorescence, and optical coherence tomography imaging as well as ex vivo quantitative histology and immunohistochemical studies revealed a significant structural and functional rescue effect in treated eyes accompanied by expression of the FAM161A protein in photoreceptors. The results of this study may serve as an important step toward future application of gene augmentation therapy in FAM161A-deficient patients by identifying a promising isoform to rescue photoreceptors and their function.
Assuntos
Degeneração Retiniana , Retinose Pigmentar , Camundongos , Animais , Humanos , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , Degeneração Retiniana/patologia , Camundongos Knockout , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Retinose Pigmentar/metabolismo , Retina/metabolismo , EletrorretinografiaRESUMO
How will people who spent their visual lives with only rods respond to cone function restoration? Will they be able suddenly see the colors of the rainbow? CNGA3-achromatopsia is a congenital hereditary disease in which cone dysfunction leads patients to have rod photoreceptor-driven vision only in daylight,1,2,3,4 seeing the world in blurry shades of gray.5,6 We studied color perception in four CNGA3-achromatopsia patients following monocular retinal gene augmentation therapy.7,8,9 Following treatment, although some cortical changes were reported,3,4 patients did not report a dramatic change in their vision.3,9 However, in accordance with the fact that sensitivity of rods and cones is most different at long wavelengths, they consistently reported seeing red objects on dark backgrounds differently than they did before surgery.3 Because clinical color assessments failed to find any indication of color vision, we conducted a gamut of tailored tests to better define patients' descriptions. We evaluated patients' perceived lightness of different colors, color detection, and saliency, comparing their treated with their untreated eyes. Although the perceived lightness of different colors was generally similar between the eyes and matched a rod-input model, patients could detect a colored stimulus only in their treated eyes. In a search task, long response times, which were further extended with array size, suggested low saliency. We suggest that treated CNGA3-achromatopsia patients can perceive a stimulus's color attribute, although in a manner that is different and very limited compared with sighted individuals. We discuss the retinal and cortical obstacles that might explain this perceptual gap.
Assuntos
Defeitos da Visão Cromática , Humanos , Defeitos da Visão Cromática/genética , Defeitos da Visão Cromática/terapia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Visão Ocular , Células Fotorreceptoras Retinianas Cones/metabolismoRESUMO
Purpose: To examine the survival of neural progenitors (NPs) cells derived from human embryonic stem cells (hESCs) following subretinal (SR) transplantation in rodents. Methods: hESCs engineered to express enhanced green fluorescent protein (eGFP) were differentiated in vitro toward an NP fate using a 4-week protocol. State of differentiation was characterized by quantitative-PCR. NPs in suspension (75,000/µl) were transplanted to the SR-space of Royal College of Surgeons (RCS) rats (n = 66), nude-RCS rats (n = 18), and NOD scid gamma (NSG) mice (n = 53). Success of engraftment was determined at 4 weeks post-transplant by in vivo visualization of GFP-expression using a properly filtered rodent fundus camera. Transplanted eyes were examined in vivo at set time points using the fundus camera, and in select cases, by optical coherence tomography imaging, and after enucleation, by retinal histology and immunohistochemistry. Results: In RCS rats, cell rejection was observed in 29% of eyes at 6 weeks, rising to 92% at 8 weeks. In the more immunodeficient nude-RCS rats, the rejection rate was still high reaching 62% of eyes at 6 weeks post-transplant. Following transplantation in highly immunodeficient NSG mice, survival of the hESC-derived NPs was much improved, with 100% survival at 9 weeks and 72% at 20 weeks. A small number of eyes that were followed past 20 weeks showed survival also at 22 weeks. Conclusions: Immune status of recipient animals influences transplant survival. Highly immunodeficient NSG mice provide a better model for studying long-term survival, differentiation, and possible integration of hESC-derived NPs. Clinical Trial Registration numbers: NCT02286089, NCT05626114.
Assuntos
Células-Tronco Embrionárias Humanas , Camundongos , Humanos , Ratos , Animais , Roedores , Retina/metabolismo , Diferenciação Celular , Transplante de Células-Tronco , Sobrevivência CelularRESUMO
PURPOSE: To report two cases masquerading as TORCH but eventually diagnosed with Enhanced S-cone Syndrome (ESCS). METHODS: Descriptive case report. RESULTS: Case 1: A ten-month-old boy presented with high hypermetropia, strabismus and bilateral chorioretinal pigmented scars with a history of cat scratch of his mother during pregnancy. He was treated for suspected toxoplasma retinitis. Choroidal neovascular membranes (CNV) were diagnosed bilaterally and treated with intravitreal bevacizumab. Genetic testing showed homozygote mutation in NR2E3 gene. Case 2: A two-year old girl presented with bilateral high hypermetropia and strabismus. Funduscopy revealed extrafoveal chorioretinal lesions and surrounding subretinal fibrosis. An elevated titer of anti-toxocara IgG antibodies was detected and managed accordingly. LE CNV was diagnosed and treated with intravitreal bevacizumab. Genetic testing disclosed homozygote mutation in NR2E3. CONCLUSION: Ocular manifestations in ESCS can be reminiscent to TORCH. CNV may develop with an incidence of 15%. We report the youngest patient with ESCS-associated CNV.
Assuntos
Neovascularização de Coroide , Hiperopia , Masculino , Humanos , Bevacizumab/uso terapêutico , Inibidores da Angiogênese/uso terapêutico , Hiperopia/complicações , Hiperopia/tratamento farmacológico , Angiofluoresceinografia , Neovascularização de Coroide/diagnóstico , Injeções Intravítreas , Tomografia de Coerência ÓpticaRESUMO
PURPOSE: To assess the prevalence of Cystoid macular edema (CME) in children with early onset retinal dystrophies (EORD) and to evaluate if there are associated factors and/or response to early treatment. METHODS: Consecutive, retrospective case series. Medical records of patients, 18 years or younger, diagnosed with EORD were included in the study. Optic coherence tomography (OCT) scans, clinical and genetic characteristics as well as other associated factors were analyzed. Main outcome was the presence of CME on OCT scans. RESULTS: One hundred and two children with EORD (aged 1-18 years, mean 9.7 ± 4.2) were recruited. OCT was performed in 60/102 and among them, 19/60 had CME (31.7%). The disease-causing gene was identified in 13 children with CME; autosomal-recessive inheritance was found in 88.3% of those with an identified genotype. Children with Usher syndrome had CME in 44.4% of the cases. Early treatment of CME resulted in variable response. CONCLUSIONS: Our results show that 31.7% of children with EORD who underwent OCT have macular edema. CME prevalence was found to be relatively higher in children with Usher syndrome. Autosomal recessive was the most prevalent inheritance identified in the EORD group as well as in the CME group. Additional prospective research is needed to assess the efficacy of early CME treatment in pediatric EORD patients.
RESUMO
PURPOSE: We aim to report on the clinical, imaging, immunological, and electrophysiological features of patients with autoimmune retinopathy (AIR) with long-term follow-up. METHODS: Single-center, retrospective study of a consecutive group of AIR patients treated in a tertiary academic medical center. RESULTS: Included were nine patients with a mean ± SD age at presentation of 65 ± 13 years and a median follow-up of 63 months (range 18-120). Five patients were known to have cancer. Median interval between onset of ocular symptoms and diagnosis of AIR was 36 months. Mean baseline and final LogMAR visual acuity were 0.72 ± 0.9 and 1.1 ± 1.2, respectively (p = 0.17). The most common funduscopic findings included optic atrophy and bone-spicule-like pigmentation. Thinning of the nerve fiber layer was the most frequent optical coherence tomographic abnormality. Electroretinographic (ERG) recordings demonstrated variably reduced cone- and rod-derived amplitudes in the majority of eyes at presentation. The most commonly detected anti-retinal antibody was anti-α-enolase. Treatment included immunomodulatory therapy and plasmapheresis. ERG tests showed stability in 64% of eyes throughout the treatment period. CONCLUSION: This study highlights the importance of maintaining a high index of suspicion of AIR, particularly in late middle-aged and elderly patients with "unexplained" visual loss, in light of the non-specific posterior segment signs and the inconsistency of the routinely used ancillary tests.
Assuntos
Doenças Autoimunes , Doenças Retinianas , Idoso , Autoanticorpos , Doenças Autoimunes/diagnóstico , Eletrorretinografia , Seguimentos , Humanos , Pessoa de Meia-Idade , Doenças Retinianas/diagnóstico , Estudos Retrospectivos , Tomografia de Coerência ÓpticaRESUMO
Purpose: RPGRIP1 encodes a ciliary protein expressed in the photoreceptor connecting cilium. Mutations in this gene cause â¼5% of Leber congenital amaurosis (LCA) worldwide, but are also associated with cone-rod dystrophy (CRD) and retinitis pigmentosa (RP) phenotypes. Our purpose was to clinically characterize RPGRIP1 patients from our cohort, collect clinical data of additional RPGRIP1 patients reported previously in the literature, identify common clinical features, and seek genotype-phenotype correlations. Methods: Clinical data were collected from 16 patients of our cohort and 212 previously reported RPGRIP1 patients and included (when available) family history, best corrected visual acuity (BCVA), refraction, comprehensive ocular examination, optical coherence tomography (OCT) imaging, visual fields (VF), and full-field electroretinography (ffERG). Results: Out of 228 patients, the majority (197, 86%) were diagnosed with LCA, 18 (7%) with RP, and 13 (5%) with CRD. Age of onset was during early childhood (n = 133, average of 1.7 years). All patients but 6 had moderate hyperopia (n = 59, mean of 4.8D), and average BCVA was 0.06 Snellen (n = 124; only 10 patients had visual acuity [VA] > 0.10 Snellen). On funduscopy, narrowing of blood vessels was noted early in life. Most patients had mild bone spicule-like pigmentation starting in the midperiphery and later encroaching upon the posterior pole. OCT showed thinning of the outer nuclear layer (ONL), while cystoid changes and edema were relatively rare. VF were usually very constricted from early on. ffERG responses were non-detectable in the vast majority of cases. Most of the mutations are predicted to be null (363 alleles), and 93 alleles harbored missense mutations. Missense mutations were identified only in two regions: the RPGR-interacting domain and the C2 domains. Biallelic null mutations are mostly associated with a severe form of the disease, whereas biallelic missense mutations usually cause a milder disease (mostly CRD). Conclusion: Our results indicate that RPGRIP1 biallelic mutations usually cause severe retinal degeneration at an early age with a cone-rod pattern. However, most of the patients exhibit preservation of some (usually low) BCVA for a long period and can potentially benefit from gene therapy. Missense changes appear only in the conserved domains and are associated with a milder phenotype.
RESUMO
Age-related macular degeneration (AMD) is a leading cause of blindness worldwide. The pathogenesis of AMD involves dysfunction and loss of the retinal pigment epithelium (RPE), a monolayer of cells that provide nourishment and functional support for the overlying photoreceptors. RPE cells in mammals are not known to divide, renew or regenerate in vivo, and in advanced AMD, RPE loss leads to degeneration of the photoreceptors and impairment of vision. One possible therapeutic approach would be to support and replace the failing RPE cells of affected patients, and indeed moderate success of surgical procedures in which relatively healthy autologous RPE from the peripheral retina of the same eye was transplanted under the retina in the macular area suggested that RPE replacement could be a means to attenuate photoreceptor cell loss. This prompted exploration of the possibility to use pluripotent stem cells (PSCs) as a potential source for "healthy and young" RPE cells for such cell-based therapy of AMD. Various approaches ranging from the use of allogeneic embryonic stem cells to autologous induced pluripotent stem cells are now being tested within early clinical trials. Such PSC-derived RPE cells are either injected into the subretinal space as a suspension, or transplanted as a monolayer patch upon scaffold support. Although most of these approaches are at early clinical stages, safety of the RPE product has been demonstrated by several of these studies. Here, we review the concept of cell-based therapy of AMD and provide an update on current progress in the field of RPE transplantation.
Assuntos
Células-Tronco Pluripotentes Induzidas , Degeneração Macular , Células-Tronco Pluripotentes , Animais , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Degeneração Macular/terapia , Epitélio Pigmentado da RetinaRESUMO
PURPOSE: To report genetic and clinical findings in a case series of 10 patients from eight unrelated families diagnosed with Senior-Løken syndrome. METHODS: A retrospective study of patients with Senior-Løken syndrome. Data collected included clinical findings electroretinography and ocular imaging. Genetic analysis was based on molecular inversion probes, whole-exome sequencing (WES), and Sanger sequencing. RESULTS: All patients who underwent electrophysiology (8/10) had widespread photoreceptor degeneration. Genetic analysis revealed two mutations in NPHP1, two mutations in NPHP4, and two mutations in IQCB1 (NPHP5). Five of the six mutations identified in the current study were found in a single family each in our cohort. The IQCB1-p.R461* mutation has been identified in 3 families. Patients harboring mutations in IQCB1 were diagnosed with Leber congenital amaurosis, while patients with NPHP4 and NPHP1 mutations showed early and sector retinitis pigmentosa, respectively. Full-field electroretinography was extinct for 6 of 10 patients, moderately decreased for two, and unavailable for another 2 subjects. Renal involvement was evident in 7/10 patients at the time of diagnosis. Kidney function was normal (based on serum creatinine) in patients younger than 10 years. Mutations in IQCB1 were associated with high hypermetropia, whereas mutations in NPHP4 were associated with high myopia. CONCLUSION: Patients presenting with infantile inherited retinal degeneration are not universally screened for renal dysfunction. Modern genetic tests can provide molecular diagnosis at an early age and therefore facilitate early diagnosis of renal disease with recommended periodic screening beyond childhood and family planning.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ligação a Calmodulina/genética , Ciliopatias/genética , Proteínas do Citoesqueleto/genética , Doenças Renais Císticas/genética , Amaurose Congênita de Leber/genética , Mutação , Atrofias Ópticas Hereditárias/genética , Proteínas/genética , Adolescente , Criança , Pré-Escolar , Ciliopatias/diagnóstico , Ciliopatias/fisiopatologia , Testes de Percepção de Cores , Análise Mutacional de DNA , Eletrorretinografia , Feminino , Humanos , Lactente , Doenças Renais Císticas/diagnóstico , Doenças Renais Císticas/fisiopatologia , Amaurose Congênita de Leber/diagnóstico , Amaurose Congênita de Leber/fisiopatologia , Masculino , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular , Atrofias Ópticas Hereditárias/diagnóstico , Atrofias Ópticas Hereditárias/fisiopatologia , Linhagem , Fenótipo , Retina/fisiopatologia , Estudos Retrospectivos , Acuidade Visual/fisiologia , Testes de Campo Visual , Sequenciamento do Exoma , Adulto JovemRESUMO
PURPOSE: To evaluate the anatomical correlation between fellow eyes for bilateral second-line anti-VEGF treatment in eyes with bilateral diabetic macular edema (DME) with incomplete response to first-line bevacizumab therapy. METHODS: Seventy-four eyes (n = 37 patients) with bilateral-DME having incomplete response to first-line bevacizumab therapy that were switched for bilateral treatment with ranibizumab were retrospectively evaluated. Data collected included demographics, visual acuity and macular thickness. We evaluate the correlation for the response of both eyes in terms of macular thickness and visual acuity. RESULTS: The mean±SD age was 76 ± 8 years. The mean±SD number of bevacizumab injections prior the switch was 11.03 ± 5.1 in the first eye (FE) and 10.9 ± 5.2 in the second eye (SE). The central subfield thickness (CST) reduced from 472 ± 171 microns at baseline to 418 ± 161 after the last bevacizumab injection and 365 ± 74 after 3 ranibizumab injections in the FE (p = .016, p = .004, respectively), and from 463 ± 145 microns to 446 ± 123, and 421 ± 103 in the SE (p = .112, p = .001, respectively). There was strong positive correlation between the eyes for the CST reduction under bevacizumab and ranibizumab treatments in each visit. BCVA± SD at baseline was 0.41 ± 0.30 LogMAR in the FE, and 0.42 ± 0.29 in the SE (p = .44). After 3 injections of bevacizumab, the BCVA was 0.37 ± 0.26 and 0.42 ± 0.23 in FE and SE respectively (p = .013, p = .132, respectively). CONCLUSIONS: This study demonstrated a strong anatomical correlation responses between the eyes in patients with bilateral DME for both first-line bevacizumab therapy and second-line ranibizumab therapy. Response to second-line therapy was favorable and correlated among eyes regardless they were from the same or different individuals.
Assuntos
Inibidores da Angiogênese/uso terapêutico , Bevacizumab/uso terapêutico , Retinopatia Diabética/tratamento farmacológico , Edema Macular/tratamento farmacológico , Ranibizumab/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Retinopatia Diabética/diagnóstico por imagem , Retinopatia Diabética/fisiopatologia , Substituição de Medicamentos , Feminino , Humanos , Injeções Intravítreas , Masculino , Retina/diagnóstico por imagem , Retina/patologia , Estudos Retrospectivos , Tomografia de Coerência Óptica , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Acuidade Visual/fisiologiaRESUMO
FAM161A mutations are the most common cause of autosomal recessive retinitis pigmentosa in the Israeli-Jewish population. We aimed to characterize the spectrum of FAM161A-associated phenotypes and identify characteristic clinical features. We identified 114 bi-allelic FAM161A patients and obtained clinical records of 100 of these patients. The most frequent initial symptom was night blindness. Best-corrected visual acuity was largely preserved through the first three decades of life and severely deteriorated during the 4th-5th decades. Most patients manifest moderate-high myopia. Visual fields were markedly constricted from early ages, but maintained for decades. Bone spicule-like pigmentary changes appeared relatively late, accompanied by nummular pigmentation. Full-field electroretinography responses were usually non-detectable at first testing. Fundus autofluorescence showed a hyper-autofluorescent ring around the fovea in all patients already at young ages. Macular ocular coherence tomography showed relative preservation of the outer nuclear layer and ellipsoid zone in the fovea, and frank cystoid macular changes were very rare. Interestingly, patients with a homozygous nonsense mutation manifest somewhat more severe disease. Our clinical analysis is one of the largest ever reported for RP caused by a single gene allowing identification of characteristic clinical features and may be relevant for future application of novel therapies.
Assuntos
Proteínas do Olho/genética , Mutação , Retinose Pigmentar/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Criança , Pré-Escolar , Estudos de Coortes , Eletrorretinografia , Feminino , Fundo de Olho , Genes Recessivos , Humanos , Israel , Judeus/genética , Masculino , Pessoa de Meia-Idade , Cegueira Noturna/genética , Retinose Pigmentar/diagnóstico , Tomografia de Coerência Óptica , Acuidade Visual/genética , Campos Visuais/genética , Adulto JovemRESUMO
Gene augmentation therapy based on subretinal delivery of adeno-associated viral (AAV) vectors is proving to be highly efficient in treating several inherited retinal degenerations. However, due to potential complications and drawbacks posed by subretinal injections, there is a great impetus to find alternative methods of delivering the desired genetic inserts to the retina. One such method is an intravitreal delivery of the vector. Our aim was to evaluate the efficacy of two capsid-modified vectors that are less susceptible to cellular degradation, AAV8 (doubleY-F) and AAV2 (quadY-F+T-V), as well as a third, chimeric vector AAV[max], to transduce photoreceptor cells following intravitreal injection in sheep. We further tested whether saturation of inner limiting membrane (ILM) viral binding sites using a nonmodified vector, before the intravitreal injection, would enhance the efficacy of photoreceptor transduction. Only AAV[max] resulted in moderate photoreceptor transduction following intravitreal injection. Intravitreal injection of the two other vectors did not result in photoreceptor transduction nor did the saturation of the ILM before the intravitreal injection. However, two of the vectors efficiently transduced photoreceptor cells following subretinal injection in positive control eyes. Previous trials with the same vectors in both murine and canine models resulted in robust and moderate transduction efficacy, respectively, of photoreceptors following intravitreal delivery, demonstrating the importance of utilizing as many animal models as possible when evaluating new strategies for retinal gene therapy. The successful photoreceptor transduction of AAV[max] injected intravitreally makes it a potential candidate for intravitreal delivery, but further trials are warranted to determine whether the transduction efficacy is sufficient for a clinical outcome.
Assuntos
Proteínas do Capsídeo/metabolismo , Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Proteínas de Fluorescência Verde/metabolismo , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Animais , Dependovirus/química , Vetores Genéticos/genética , Injeções Intravítreas , Ovinos , Transdução GenéticaRESUMO
Recombinant adeno associated viruses (AAV) are the most commonly used vectors in animal model studies of gene therapy for retinal diseases. The ability of a vector to localize and remain in the target tissue, and in this manner to avoid off-target effects beyond the site of delivery, is critical to the efficacy and safety of the treatment. The in vivo imaging system (IVIS) is a non-invasive imaging tool used for detection and quantification of bioluminescence activity in rodents. Our aim was to investigate whether IVIS can detect localization and biodistribution of AAV5 vector in mice following subretinal (SR) and intravitreal (IVT) injections. AAV5 carrying firefly luciferase DNA under control of the ubiquitous cytomegalovirus (CMV) promoter was injected unilaterally IVT or SR (in the central or peripheral retina) of forty-one mice. Luciferase activity was tracked for up to 60 weeks in the longest surviving animals, using repeated (up to 12 times) IVIS bioluminescence imaging. Luciferase presence was also confirmed immunohistochemically (IHC) and by PCR in representative animals. In the SR group, IVIS readings demonstrated luciferase activity in all (32/32) eyes, and luciferase presence was confirmed by IHC (4/4 eyes) and PCR (12/12 eyes). In the IVT group, IVIS readings demonstrated luciferase activity in 7/9 eyes, and luciferase presence was confirmed by PCR in 5/5 eyes and by IHC (2/2 eyes). In two SR-injected animals (one each from the central and peripheral injection sites), PCR detected luciferase presence in the ipsilateral optic nerves, a finding that was not detected by IVIS or IHC. Our results show that when evaluating SR delivery, IVIS has a sensitivity and specificity of 100% compared with the gold standard PCR. When evaluating IVT delivery, IVIS has a sensitivity of 78% and specificity of 100%. These finding confirm the ability of IVIS to detect in-vivo localized expression of AAV following SR delivery in the retina up to 60 weeks post-treatment, using repeated imaging for longitudinal evaluation, without fading of the biological signal, thereby replacing the need for post mortem processing in order to confirm vector expression. However, IVIS is probably not sensitive enough, compared with genome detection, to demonstrate biodistribution to the optic nerve, as it could not detect luciferase activity in ipsilateral optic nerves following SR delivery in mice.
Assuntos
Dependovirus/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Vetores Genéticos , Luciferases de Vaga-Lume/genética , Nervo Óptico/enzimologia , Retina/enzimologia , Corpo Vítreo/enzimologia , Animais , Técnicas de Transferência de Genes , Imuno-Histoquímica , Injeções Intravítreas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nervo Óptico/diagnóstico por imagem , Reação em Cadeia da Polimerase , Retina/diagnóstico por imagem , Corpo Vítreo/diagnóstico por imagemRESUMO
Age-related macular degeneration is caused by dysfunction and loss of retinal pigment epithelium (RPE) cells, and their transplantation may rescue visual functions and delay disease progression. Human embryonic stem cells (hESCs) may be an unlimited source of RPE cells for allotransplantation. We analyzed the immunomodulatory properties of hESC-derived RPE (hESC-RPE) cells, and showed that they inhibited T cell responses. Co-culture experiments showed that RPE cells inhibited interfon-γ secretion and proliferation of activated T cells. Furthermore, hESC-RPE cells enhanced T cell apoptosis and secretion of the anti-inflammatory cytokine interleukin-10 (IL-10). In addition, RPE cells altered the expression of T cell activation markers, CD69 and CD25. RPE cells transplanted into RCS rats without immunosuppression survived, provided retinal rescue, and enhanced IL-10 blood levels. Our data suggest that hESC-RPE cells have immunosuppressive properties. Further studies will determine if these properties are sufficient to alleviate the need for immunosuppression therapy after their clinical allotransplantation.
Assuntos
Células-Tronco Embrionárias Humanas/imunologia , Epitélio Pigmentado da Retina/imunologia , Linfócitos T/imunologia , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Linhagem Celular , Técnicas de Cocultura , Células-Tronco Embrionárias Humanas/citologia , Humanos , Imunomodulação , Interferon gama/imunologia , Interleucina-10/imunologia , Lectinas Tipo C/imunologia , Ativação Linfocitária , Epitélio Pigmentado da Retina/citologia , Linfócitos T/citologiaRESUMO
Achromatopsia causes severely reduced visual acuity, photoaversion, and inability to discern colors due to cone photoreceptor dysfunction. In 2010, we reported on day-blindness in sheep caused by a stop-codon mutation of the ovine CNGA3 gene and began gene augmentation therapy trials in this naturally occurring large animal model of CNGA3 achromatopsia. The purpose of this study was to evaluate long-term efficacy and safety results of treatment, findings that hold great relevance for clinical trials that started recently in CNGA3 achromatopsia patients. Nine day-blind sheep were available for long-term follow up. The right eye of each sheep was treated with a single subretinal injection of an Adeno-Associated Virus Type 5 (AAV5) vector carrying either a mouse (n = 4) or a human (n = 5) CNGA3 transgene under control of the 2.1-Kb red/green opsin promoter. The efficacy of treatment was assessed periodically with photopic maze tests and electroretinographic (ERG) recordings for as long as 74 months postoperatively. Safety was assessed by repeated ophthalmic examinations and scotopic ERG recordings. The retinas of three animals that died of unrelated causes >5 years post-treatment were studied histologically and immunohistochemically using anti-hCNGA3 and anti-red/green cone opsin antibodies. Passage time and number of collisions of treated sheep in the photopic maze test were significantly lower at all follow-up examinations as compared with pretreatment values (p = 0.0025 and p < 0.001, respectively). ERG Critical Flicker Fusion Frequency and flicker amplitudes at 30 and 40 Hz showed significant improvement following treatment (p < 0.0001) throughout the study. Ophthalmic examinations and rod ERG recordings showed no abnormalities in the treated eyes. Immunohistochemistry revealed the presence of CNGA3 protein in red/green opsin-positive cells (cones) of the treated eyes. Our results show significant, long-term improvement in cone function, demonstrating a robust rescue effect up to six years following a single treatment with a viral vector that provides episomal delivery of the transgene. This unique follow-up duration confirms the safe and stable nature of AAV5 gene therapy in the ovine achromatopsia model.
Assuntos
Defeitos da Visão Cromática , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Terapia Genética , Animais , Defeitos da Visão Cromática/genética , Defeitos da Visão Cromática/terapia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Modelos Animais de Doenças , Eletrorretinografia , Vetores Genéticos , Camundongos , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Opsinas de Bastonetes , Ovinos , TransgenesRESUMO
Purpose: Usher syndrome (USH) is the most common cause for deaf-blindness. It is genetically and clinically heterogeneous and prevalent in populations with high consanguinity rate. We aim to characterize the set of genes and mutations that cause USH in the Israeli and Palestinian populations. Methods: Seventy-four families with USH were recruited (23 with USH type 1 [USH1], 33 with USH2, seven with USH3, four with atypical USH, and seven families with an undetermined USH type). All affected subjects underwent a full ocular evaluation. A comprehensive genetic analysis, including Sanger sequencing for the detection of founder mutations, homozygosity mapping, and whole exome sequencing in large families was performed. Results: In 79% of the families (59 out of 74), an autosomal recessive inheritance pattern could be determined. Mutation detection analysis led to the identification of biallelic causative mutations in 51 (69%) of the families, including 21 families with mutations in USH2A, 17 in MYO7A, and seven in CLRN1. Our analysis revealed 28 mutations, 11 of which are novel (including c.802G>A, c.8558+1G>T, c.10211del, and c.14023A>T in USH2A; c.285+2T>G, c.2187+1G>T, c.3892G>A, c.5069_5070insC, c.5101C>T, and c.6196C>T in MYO7A; and c.15494del in GPR98). Conclusions: We report here novel homozygous mutations in various genes causing USH, extending the spectrum of causative mutations. We also prove combined sequencing techniques as useful tools to identify novel disease-causing mutations. To the best of our knowledge, this is the largest report of a genetic analysis of Israeli and Palestinian families (n = 74) with different USH subtypes.
Assuntos
Etnicidade/genética , Proteínas da Matriz Extracelular/genética , Proteínas de Membrana/genética , Mutação , Miosinas/genética , Polimorfismo de Nucleotídeo Único , Síndromes de Usher/genética , Adulto , Árabes , Criança , Consanguinidade , Análise Mutacional de DNA , Feminino , Efeito Fundador , Testes Genéticos , Genótipo , Humanos , Israel , Masculino , Miosina VIIa , Linhagem , Reação em Cadeia da Polimerase , Síndromes de Usher/diagnóstico , Adulto JovemRESUMO
PURPOSE: We aimed to identify the cause of disease in patients suffering from a distinctive, atypical form of Usher syndrome. METHODS: Whole-exome and genome sequencing were performed in five patients from three families of Yemenite Jewish origin, suffering from distinctive retinal degeneration phenotype and sensorineural hearing loss. Functional analysis of the wild-type and mutant proteins was performed in human fibrosarcoma cells. RESULTS: We identified a homozygous founder missense variant, c.133G>T (p.D45Y) in arylsulfatase G (ARSG). All patients shared a distinctive retinal phenotype with ring-shaped atrophy along the arcades engirdling the fovea, resulting in ring scotoma. In addition, patients developed moderate to severe sensorineural hearing loss. Both vision and hearing loss appeared around the age of 40 years. The identified variant affected a fully conserved amino acid that is part of the catalytic site of the enzyme. Functional analysis of the wild-type and mutant proteins showed no basal activity of p.D45Y. CONCLUSION: Homozygosity for ARSG-p.D45Y in humans leads to protein dysfunction, causing an atypical combination of late-onset Usher syndrome. Although there is no evidence for generalized clinical manifestations of lysosomal storage diseases in this set of patients, we cannot rule out the possibility that mild and late-onset symptoms may appear.
Assuntos
Arilsulfatases/genética , Síndromes de Usher/genética , Adulto , Arilsulfatases/metabolismo , Sequência de Bases , Análise Mutacional de DNA , Feminino , Efeito Fundador , Homozigoto , Humanos , Masculino , Mutação , Mutação de Sentido Incorreto , Linhagem , Retina/metabolismo , Degeneração Retiniana/enzimologia , Degeneração Retiniana/genética , Retinose Pigmentar/enzimologia , Retinose Pigmentar/genética , Sequenciamento do Exoma , Sequenciamento Completo do GenomaRESUMO
PURPOSE: Retinal pigment epithelium (RPE) dysfunction underlies the retinal degenerative process in age-related macular degeneration (AMD), and thus RPE cell replacement provides an optimal treatment target. We characterized longitudinally the efficacy of RPE cells derived under xeno-free conditions from clinical and xeno-free grade human embryonic stem cells (OpRegen) following transplantation into the subretinal space of Royal College of Surgeons (RCS) rats. METHODS: Postnatal (P) day 20 to 25 RCS rats (n = 242) received a single subretinal injection of 25,000 (low)-, 100,000 (mid)-, or 200,000 (high)-dose xeno-free RPE cells. BSS+ (balanced salt solution) (vehicle) and unoperated eyes served as controls. Optomotor tracking (OKT) behavior was used to quantify functional efficacy. Histology and immunohistochemistry were used to evaluate photoreceptor rescue and transplanted cell survival at 60, 100, 150, and 200 days of age. RESULTS: OKT was rescued in a dose-dependent manner. Outer nuclear layer (ONL) was significantly thicker in cell-treated eyes than controls up to P150. Transplanted RPE cells were identified in both the subretinal space and integrated into the host RPE monolayer in animals of all age groups, and often contained internalized photoreceptor outer segments. No pathology was observed. CONCLUSIONS: OpRegen RPE cells survived, rescued visual function, preserved rod and cone photoreceptors long-term in the RCS rat. Thus, these data support the use of OpRegen RPE cells for the treatment of human RPE cell disorders including AMD. TRANSLATIONAL RELEVANCE: Our novel xeno-free RPE cells minimize concerns of animal derived contaminants while providing a promising prospective therapy to the diseased retina.
RESUMO
Applied Genetic Technologies Corporation (AGTC) is developing a recombinant adeno-associated virus (rAAV) vector expressing the human CNGA3 gene designated AGTC-402 (rAAV2tYF-PR1.7-hCNGA3) for the treatment of achromatopsia, an inherited retinal disorder characterized by markedly reduced visual acuity, extreme light sensitivity, and absence of color discrimination. The results are herein reported of a study evaluating safety and efficacy of AGTC-402 in CNGA3-deficient sheep. Thirteen day-blind sheep divided into three groups of four or five animals each received a subretinal injection of an AAV vector expressing a CNGA3 gene in a volume of 500 µL in the right eye. Two groups (n = 9) received either a lower or higher dose of the AGTC-402 vector, and one efficacy control group (n = 4) received a vector similar in design to one previously shown to rescue cone photoreceptor responses in the day-blind sheep model (rAAV5-PR2.1-hCNGA3). The left eye of each animal received a subretinal injection of 500 µL of vehicle (n = 4) or was untreated (n = 9). Subretinal injections were generally well tolerated and not associated with systemic toxicity. Most animals had mild to moderate conjunctival hyperemia, chemosis, and subconjunctival hemorrhage immediately after surgery that generally resolved by postoperative day 7. Two animals treated with the higher dose of AGTC-402 and three of the efficacy control group animals had microscopic findings of outer retinal atrophy with or without inflammatory cells in the retina and choroid that were procedural and/or test-article related. All vector-treated eyes showed improved cone-mediated electroretinography responses with no change in rod-mediated electroretinography responses. Behavioral maze testing under photopic conditions showed significantly improved navigation times and reduced numbers of obstacle collisions in all vector-treated eyes compared to their contralateral control eyes or pre-dose results in the treated eyes. These results support the use of AGTC-402 in clinical studies in patients with achromatopsia caused by CNGA3 mutations, with careful evaluation for possible inflammatory and/or toxic effects.