Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Res Sq ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205518

RESUMO

Many species use a temporary drop in body temperature and metabolic rate (torpor) as a strategy to survive food scarcity. A similar profound hypothermia is observed with activation of preoptic neurons that express the neuropeptides Pituitary Adenylate-Cyclase-Activating Polypeptide (PACAP)1, Brain Derived Neurotrophic Factor (BDNF)2, or Pyroglutamylated RFamide Peptide (QRFP)3, the vesicular glutamate transporter, Vglut24,5 or the leptin receptor6 (LepR), estrogen 1 receptor (Esr1)7 or prostaglandin E receptor 3 (EP3R) in mice8. However, most of these genetic markers are found on multiple populations of preoptic neurons and only partially overlap with one another. We report here that expression of the EP3R marks a unique population of median preoptic (MnPO) neurons that are required both for lipopolysaccharide (LPS)-induced fever9 and for torpor. These MnPOEP3R neurons produce persistent fever responses when inhibited and prolonged hypothermic responses when activated either chemo- or opto-genetically even for brief periods of time. The mechanism for these prolonged responses appears to involve increases in intracellular calcium in individual EP3R-expressing preoptic neurons that persist for many minutes up to hours beyond the termination of a brief stimulus. These properties endow MnPOEP3R neurons with the ability to act as a two-way master switch for thermoregulation.

2.
Cell ; 185(24): 4654-4673.e28, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36334589

RESUMO

Brown adipose tissue (BAT) regulates metabolic physiology. However, nearly all mechanistic studies of BAT protein function occur in a single inbred mouse strain, which has limited the understanding of generalizable mechanisms of BAT regulation over physiology. Here, we perform deep quantitative proteomics of BAT across a cohort of 163 genetically defined diversity outbred mice, a model that parallels the genetic and phenotypic variation found in humans. We leverage this diversity to define the functional architecture of the outbred BAT proteome, comprising 10,479 proteins. We assign co-operative functions to 2,578 proteins, enabling systematic discovery of regulators of BAT. We also identify 638 proteins that correlate with protection from, or sensitivity to, at least one parameter of metabolic disease. We use these findings to uncover SFXN5, LETMD1, and ATP1A2 as modulators of BAT thermogenesis or adiposity, and provide OPABAT as a resource for understanding the conserved mechanisms of BAT regulation over metabolic physiology.


Assuntos
Tecido Adiposo Marrom , Proteoma , Humanos , Camundongos , Animais , Tecido Adiposo Marrom/metabolismo , Proteoma/metabolismo , Termogênese/fisiologia , Adiposidade , Obesidade/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas/metabolismo
3.
ACS Chem Biol ; 16(8): 1401-1412, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34279901

RESUMO

Bile acids play crucial roles in host physiology by acting both as detergents that aid in digestion and as signaling molecules that bind to host receptors. Gut bacterial bile salt hydrolase (BSH) enzymes perform the gateway reaction leading to the conversion of host-produced primary bile acids into bacterially modified secondary bile acids. Small molecule probes that target BSHs will help elucidate the causal roles of these metabolites in host physiology. We previously reported the development of a covalent BSH inhibitor with low gut permeability. Here, we build on our previous findings and describe the development of a second-generation gut-restricted BSH inhibitor with enhanced potency, reduced off-target effects, and durable in vivo efficacy. Structure-activity relationship (SAR) studies focused on the bile acid core identified a compound, AAA-10, containing a C3-sulfonated lithocholic acid scaffold and an alpha-fluoromethyl ketone warhead as a potent pan-BSH inhibitor. This compound inhibits BSH activity in mouse and human fecal slurry, bacterial cultures, and purified BSH proteins and displays reduced toxicity against mammalian cells compared to first generation compounds. Oral administration of AAA-10 to wild-type mice for 5 days resulted in a decrease in the abundance of the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA) in the mouse GI tract with low systemic exposure of AAA-10, demonstrating that AAA-10 is an effective tool for inhibiting BSH activity and modulating bile acid pool composition in vivo.


Assuntos
Amidoidrolases/antagonistas & inibidores , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Ácido Litocólico/análogos & derivados , Ácido Litocólico/farmacologia , Animais , Bactérias/efeitos dos fármacos , Ácidos e Sais Biliares/metabolismo , Linhagem Celular Tumoral , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/toxicidade , Fezes/química , Fezes/enzimologia , Humanos , Ácido Litocólico/toxicidade , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Relação Estrutura-Atividade
4.
Elife ; 102021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34155969

RESUMO

Background: Obesity is widespread and linked to various co-morbidities. Bariatric surgery has been identified as the only effective treatment, promoting sustained weight loss and the remission of co-morbidities. Methods: Metabolic profiling was performed on diet-induced obese (DIO) mice, lean mice, and DIO mice that underwent sleeve gastrectomies (SGx). In addition, mice were subjected to intraperitoneal (i.p.) injections with taurodeoxycholic acid (TDCA) and valine. Indirect calorimetry was performed to assess food intake and energy expenditure. Expression of appetite-regulating hormones was assessed through quantification of isolated RNA from dissected hypothalamus tissue. Subsequently, i.p. injections with a melanin-concentrating hormone (MCH) antagonist and intrathecal administration of MCH were performed and weight loss was monitored. Results: Mass spectrometric metabolomic profiling revealed significantly reduced systemic levels of TDCA and L-valine in DIO mice. TDCA and L-valine levels were restored after SGx in both human and mice to levels comparable with lean controls. Systemic treatment with TDCA and valine induced a profound weight loss analogous to effects observed after SGx. Utilizing indirect calorimetry, we confirmed reduced food intake as causal for TDCA/valine-mediated weight loss via a central inhibition of the MCH. Conclusions: In summary, we identified restored TDCA/valine levels as an underlying mechanism of SGx-derived effects on weight loss. Of translational relevance, TDCA and L-valine are presented as novel agents promoting weight loss while reversing obesity-associated metabolic disorders. Funding: This work has been supported in part by a grant from NIH (UO-1 A1 132898 to S.G.T., DP and MA). M.Q. was supported by the IFB Integrated Research and Treatment Centre Adiposity Diseases (Leipzig, Germany) and the German Research Foundation (QU 420/1-1). J.I. was supported by the Biomedical Education Program (BMEP) of the German Academic Exchange Service (DAAD). T.H. (HE 7457/1-1) and F.K. (KR 4362/1-1) were supported by the German Research Foundation (DFG). H.R.C.B. was supported the Swiss Society of Cardiac Surgery. Y.N. was supported by the Chinese Scholarship Council (201606370196) and Central South University. H.U., T.M. and R.M. were supported by the Osaka Medical Foundation. C.S.F. was supported by the German Research Foundation (DFG, SFB738, B3).


Assuntos
Cirurgia Bariátrica/efeitos adversos , Gastrectomia/efeitos adversos , Metaboloma , Ácido Taurodesoxicólico/metabolismo , Valina/metabolismo , Animais , Injeções Intraperitoneais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Ácido Taurodesoxicólico/administração & dosagem , Valina/administração & dosagem
5.
Nature ; 583(7814): 115-121, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32528180

RESUMO

The advent of endothermy, which is achieved through the continuous homeostatic regulation of body temperature and metabolism1,2, is a defining feature of mammalian and avian evolution. However, when challenged by food deprivation or harsh environmental conditions, many mammalian species initiate adaptive energy-conserving survival strategies-including torpor and hibernation-during which their body temperature decreases far below its homeostatic set-point3-5. How homeothermic mammals initiate and regulate these hypothermic states remains largely unknown. Here we show that entry into mouse torpor, a fasting-induced state with a greatly decreased metabolic rate and a body temperature as low as 20 °C6, is regulated by neurons in the medial and lateral preoptic area of the hypothalamus. We show that restimulation of neurons that were activated during a previous bout of torpor is sufficient to initiate the key features of torpor, even in mice that are not calorically restricted. Among these neurons we identify a population of glutamatergic Adcyap1-positive cells, the activity of which accurately determines when mice naturally initiate and exit torpor, and the inhibition of which disrupts the natural process of torpor entry, maintenance and arousal. Taken together, our results reveal a specific neuronal population in the mouse hypothalamus that serves as a core regulator of torpor. This work forms a basis for the future exploration of mechanisms and circuitry that regulate extreme hypothermic and hypometabolic states, and enables genetic access to monitor, initiate, manipulate and study these ancient adaptations of homeotherm biology.


Assuntos
Metabolismo Energético/fisiologia , Hipotálamo/citologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Torpor/fisiologia , Animais , Jejum , Feminino , Privação de Alimentos , Glutamina/metabolismo , Hipotálamo/fisiologia , Masculino , Camundongos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo
6.
Nat Chem Biol ; 16(3): 318-326, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32042200

RESUMO

Bile salt hydrolase (BSH) enzymes are widely expressed by human gut bacteria and catalyze the gateway reaction leading to secondary bile acid formation. Bile acids regulate key metabolic and immune processes by binding to host receptors. There is an unmet need for a potent tool to inhibit BSHs across all gut bacteria to study the effects of bile acids on host physiology. Here, we report the development of a covalent pan-inhibitor of gut bacterial BSHs. From a rationally designed candidate library, we identified a lead compound bearing an alpha-fluoromethyl ketone warhead that modifies BSH at the catalytic cysteine residue. This inhibitor abolished BSH activity in conventional mouse feces. Mice gavaged with a single dose of this compound displayed decreased BSH activity and decreased deconjugated bile acid levels in feces. Our studies demonstrate the potential of a covalent BSH inhibitor to modulate bile acid composition in vivo.


Assuntos
Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Microbioma Gastrointestinal/fisiologia , Amidoidrolases/fisiologia , Animais , Bactérias/enzimologia , Ácidos e Sais Biliares/metabolismo , Desenho de Fármacos , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bibliotecas de Moléculas Pequenas
7.
Am J Physiol Endocrinol Metab ; 318(5): E678-E688, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32069072

RESUMO

Sleeve gastrectomy (SG) induces weight loss-independent improvements in glucose homeostasis by unknown mechanisms. We sought to identify the metabolic adaptations responsible for these improvements. Nonobese C57BL/6J mice on standard chow underwent SG or sham surgery. Functional testing and indirect calorimetry were used to capture metabolic phenotypes. Tissue-specific glucose uptake was assessed by 18-fluorodeoxyglucose (18-FDG) PET/computed tomography, and RNA sequencing was used for gene-expression analysis. In this model, SG induced durable improvements in glucose tolerance in the absence of changes in weight, body composition, or food intake. Indirect calorimetry revealed that SG increased the average respiratory exchange ratio toward 1.0, indicating a weight-independent, systemic shift to carbohydrate utilization. Following SG, orally administered 18-FDG preferentially localized to white adipose depots, showing tissue-specific increases in glucose utilization induced by surgery. Transcriptional analysis with RNA sequencing demonstrated that increased glucose uptake in the visceral adipose tissue was associated with upregulation in transcriptional pathways involved in energy metabolism, adipocyte maturation, and adaptive and innate immune cell chemotaxis and differentiation. SG induces a rapid, weight loss-independent shift toward glucose utilization and transcriptional remodeling of metabolic and immune pathways in visceral adipose tissue. Continued study of this early post-SG physiology may lead to a better understanding of the anti-diabetic mechanisms of bariatric surgery.


Assuntos
Tecido Adiposo/metabolismo , Composição Corporal/fisiologia , Gastrectomia , Glucose/metabolismo , Redução de Peso/fisiologia , Animais , Glicemia/metabolismo , Calorimetria Indireta , Ingestão de Alimentos/fisiologia , Teste de Tolerância a Glucose , Homeostase/fisiologia , Masculino , Camundongos , Modelos Animais
8.
Br J Anaesth ; 123(5): 627-636, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31563269

RESUMO

BACKGROUND: Excessive opioid prescribing after surgery has been recognised as a contributor to the current crisis of opioid addiction and overdose. Clinicians may potentially tackle this crisis by using opioid-free postoperative analgesia; however, the scientific literature addressing this approach is sparse and heterogeneous, thereby limiting robust conclusions. A scoping review was conducted to systematically map the extent, range, and nature of the literature addressing postoperative opioid-free analgesia. METHODS: Eight bibliographic databases were searched for studies addressing opioid-free analgesia after a major surgery. We extracted the study characteristics, including design, country, year, surgical procedure(s), and interventions. Results were organised thematically according to surgical specialty and targeted phase of recovery: in hospital (early recovery, ≤24 h after operation; intermediate recovery, >24 h) and post-discharge (late recovery). Reporting was according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement for scoping reviews. RESULTS: We identified 424 studies addressing postoperative opioid-free analgesia. The number of studies conducted in countries where the opioid crisis is primarily focused was remarkably low (USA, n=11 [3%]; Canada, n=5 [1%]). Many RCTs compared opioid-free vs opioid analgesia during hospital stay (n=117), but few targeted analgesia post-discharge (n=8). Studies were predominantly focused on procedures in orthopaedic, general, and gynaecological/obstetric surgery. Limited attention has been directed towards non-pharmacological pain interventions. We did not identify knowledge synthesis studies (i.e. systematic reviews and meta-analyses) focused on the comparative effectiveness of opioid-free vs opioid analgesia. CONCLUSIONS: Opioids remain a mainstay analgesic for managing pain after surgery, but alternative analgesia strategies should not be overlooked. This scoping review indicates numerous opportunities for future research targeting opioid-free postoperative analgesia. REVIEW REGISTRATION: http://www.researchregistry.com; ID: reviewregistry576.


Assuntos
Analgésicos não Narcóticos/administração & dosagem , Analgésicos Opioides/administração & dosagem , Transtornos Relacionados ao Uso de Opioides/prevenção & controle , Dor Pós-Operatória/prevenção & controle , Padrões de Prática Médica/estatística & dados numéricos , Uso de Medicamentos/estatística & dados numéricos , Humanos , Manejo da Dor/métodos , Cuidados Pós-Operatórios/métodos
10.
Nat Immunol ; 20(3): 373, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30728493

RESUMO

In the version of this article initially published, three authors (Hui-Fern Kuoy, Adam P. Uldrich and Dale. I. Godfrey) and their affiliations, acknowledgments and contributions were not included. The correct information is as follows:Ayano C. Kohlgruber1,2, Shani T. Gal-Oz3, Nelson M. LaMarche1,2, Moto Shimazaki1, Danielle Duquette4, Hui-Fern Koay5,6, Hung N. Nguyen1, Amir I. Mina4, Tyler Paras1, Ali Tavakkoli7, Ulrich von Andrian2,8, Adam P. Uldrich5,6, Dale I. Godfrey5,6, Alexander S. Banks4, Tal Shay3, Michael B. Brenner1,10* and Lydia Lynch1,4,9,10*1Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA. 2Division of Medical Sciences, Harvard Medical School, Boston, MA, USA. 3Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel. 4Division of Endocrinology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA. 5Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia. 6ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Australia. 7Department of General and Gastrointestinal Surgery, Brigham and Women's Hospital, Boston, MA, USA. 8Department of Microbiology and Immunology, Harvard Medical School, Boston, MA, USA. 9School of Biochemistry and Immunology, Trinity College, Dublin, Ireland. 10These authors jointly supervised this work: Michael B. Brenner, Lydia Lynch. *e-mail: mbrenner@research.bwh.harvard.edu; llynch@bwh.harvard.eduAcknowledgementsWe thank A.T. Chicoine, flow cytometry core manager at the Human Immunology Center at BWH, for flow cytometry sorting. We thank D. Sant'Angelo (Rutgers Cancer Institute) for providing Zbtb16-/- mice and R. O'Brien (National Jewish Health) for providing Vg4/6-/- mice. Supported by NIH grant R01 AI11304603 (to M.B.B.), ERC Starting Grant 679173 (to L.L.), the National Health and Medical Research Council of Australia (1013667), an Australian Research Council Future Fellowship (FT140100278 for A.P.U.) and a National Health and Medical Research Council of Australia Senior Principal Research Fellowship (1117766 for D.I.G.).Author contributionsA.C.K., L.L., and M.B.B. conceived and designed the experiments, and wrote the manuscript. A.C.K., N.M.L., L.L., H.N.N., M.S., T.P., and D.D. performed the experiments. S.T.G.-O. and T.S. performed the RNA-seq analysis. A.S.B. and A.I.M. provided advice and performed the CLAMS experiments. A.T. provided human bariatric patient samples. Parabiosis experiments were performed in the laboratory of U.v.A. H.-F.K., A.P.U. and D.I.G provided critical insight into the TCR chain usage of PLZF+ γδ T cells. M.B.B., N.M.L., and L.L. critically reviewed the manuscript.The errors have been corrected in the HTML and PDF version of the article.Correction to: Nature Immunology doi:10.1038/s41590-018-0094-2 (2018), published online 18 April 2018.

11.
Dev Cell ; 48(2): 277-286.e6, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30639055

RESUMO

Interactions between tumors and host tissues play essential roles in tumor-induced systemic wasting and cancer cachexia, including muscle wasting and lipid loss. However, the pathogenic molecular mechanisms of wasting are still poorly understood. Using a fly model of tumor-induced organ wasting, we observed aberrant MEK activation in both tumors and host tissues of flies bearing gut-yki3SA tumors. We found that host MEK activation results in muscle wasting and lipid loss, while tumor MEK activation is required for tumor growth. Strikingly, host MEK suppression alone is sufficient to abolish the wasting phenotypes without affecting tumor growth. We further uncovered that yki3SA tumors produce the vein (vn) ligand to trigger autonomous Egfr/MEK-induced tumor growth and produce the PDGF- and VEGF-related factor 1 (Pvf1) ligand to non-autonomously activate host Pvr/MEK signaling and wasting. Altogether, our results demonstrate the essential roles and molecular mechanisms of differential MEK activation in tumor-induced host wasting.


Assuntos
Caquexia/metabolismo , Ligantes , Sistema de Sinalização das MAP Quinases/fisiologia , Transdução de Sinais/fisiologia , Animais , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Fosforilação
12.
Hum Mol Genet ; 27(24): 4194-4203, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30169630

RESUMO

Great strides in gene discovery have been made using a multitude of methods to associate phenotypes with genetic variants, but there still remains a substantial gap between observed symptoms and identified genetic defects. Herein, we use the convergence of various genetic and genomic techniques to investigate the underpinnings of a constellation of phenotypes that include prostate cancer (PCa) and sensorineural hearing loss (SNHL) in a human subject. Through interrogation of the subject's de novo, germline, balanced chromosomal translocation, we first identify a correlation between his disorders and a poorly annotated gene known as lipid droplet associated hydrolase (LDAH). Using data repositories of both germline and somatic variants, we identify convergent genomic evidence that substantiates a correlation between loss of LDAH and PCa. This correlation is validated through both in vitro and in vivo models that show loss of LDAH results in increased risk of PCa and, to a lesser extent, SNHL. By leveraging convergent evidence in emerging genomic data, we hypothesize that loss of LDAH is involved in PCa and other phenotypes observed in support of a genotype-phenotype association in an n-of-one human subject.


Assuntos
Perda Auditiva Neurossensorial/genética , Neoplasias da Próstata/genética , Serina Proteases/genética , Translocação Genética/genética , Adulto , Idoso , Animais , Estudo de Associação Genômica Ampla , Células Germinativas/patologia , Perda Auditiva Neurossensorial/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Neoplasias da Próstata/patologia
13.
Nat Immunol ; 19(5): 464-474, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29670241

RESUMO

γδ T cells are situated at barrier sites and guard the body from infection and damage. However, little is known about their roles outside of host defense in nonbarrier tissues. Here, we characterize a highly enriched tissue-resident population of γδ T cells in adipose tissue that regulate age-dependent regulatory T cell (Treg) expansion and control core body temperature in response to environmental fluctuations. Mechanistically, innate PLZF+ γδ T cells produced tumor necrosis factor and interleukin (IL) 17 A and determined PDGFRα+ and Pdpn+ stromal-cell production of IL-33 in adipose tissue. Mice lacking γδ T cells or IL-17A exhibited decreases in both ST2+ Treg cells and IL-33 abundance in visceral adipose tissue. Remarkably, these mice also lacked the ability to regulate core body temperature at thermoneutrality and after cold challenge. Together, these findings uncover important physiological roles for resident γδ T cells in adipose tissue immune homeostasis and body-temperature control.


Assuntos
Tecido Adiposo/citologia , Homeostase/fisiologia , Interleucina-17/metabolismo , Linfócitos T Reguladores/fisiologia , Termogênese/fisiologia , Tecido Adiposo/fisiologia , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T gama-delta , Subpopulações de Linfócitos T/fisiologia
14.
Proc Natl Acad Sci U S A ; 115(3): 561-566, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29295932

RESUMO

The peroxisome-proliferator receptor-γ (PPARγ) is expressed in multiple cancer types. Recently, our group has shown that PPARγ is phosphorylated on serine 273 (S273), which selectively modulates the transcriptional program controlled by this protein. PPARγ ligands, including thiazolidinediones (TZDs), block S273 phosphorylation. This activity is chemically separable from the canonical activation of the receptor by agonist ligands and, importantly, these noncanonical agonist ligands do not cause some of the known side effects of TZDs. Here, we show that phosphorylation of S273 of PPARγ occurs in cancer cells on exposure to DNA damaging agents. Blocking this phosphorylation genetically or pharmacologically increases accumulation of DNA damage, resulting in apoptotic cell death. A genetic signature of PPARγ phosphorylation is associated with worse outcomes in response to chemotherapy in human patients. Noncanonical agonist ligands sensitize lung cancer xenografts and genetically induced lung tumors to carboplatin therapy. Moreover, inhibition of this phosphorylation results in deregulation of p53 signaling, and biochemical studies show that PPARγ physically interacts with p53 in a manner dependent on S273 phosphorylation. These data implicate a role for PPARγ in modifying the p53 response to cytotoxic therapy, which can be modulated for therapeutic gain using these compounds.


Assuntos
Antineoplásicos/administração & dosagem , Dano ao DNA , Neoplasias Pulmonares/tratamento farmacológico , PPAR gama/metabolismo , Tiazolidinedionas/administração & dosagem , Motivos de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Carboplatina/administração & dosagem , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Humanos , Ligantes , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Nus , PPAR gama/agonistas , PPAR gama/química , PPAR gama/genética , Fosforilação , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
15.
J Clin Invest ; 127(9): 3300-3312, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28758901

RESUMO

M2 macrophages, innate lymphoid type 2 cells (ILC2s), eosinophils, Tregs, and invariant NK T cells (iNKT cells) all help to control adipose tissue inflammation, while M1 macrophages, TNF, and other inflammatory cytokines drive inflammation and insulin resistance in obesity. Stromal cells regulate leukocyte responses in lymph nodes, but the role of stromal cells in adipose tissue inflammation is unknown. PDGFRα+ stromal cells are major producers of IL-33 in adipose tissue. Here, we show that mesenchymal cadherin-11 modulates stromal fibroblast function. Cadherin-11-deficient mice displayed increased stromal production of IL-33, with concomitant enhancements in ILC2s and M2 macrophages that helped control adipose tissue inflammation. Higher expression levels of IL-33 in cadherin-11-deficient mice mediated ILC2 activation, resulting in higher IL-13 expression levels and M2 macrophage expansion in adipose tissue. Consistent with reduced adipose tissue inflammation, cadherin-11-deficient mice were protected from obesity-induced glucose intolerance and adipose tissue fibrosis. Importantly, anti-cadherin-11 mAb blockade similarly improved inflammation and glycemic control in obese WT mice. These results suggest that stromal fibroblasts expressing cadherin-11 regulate adipose tissue inflammation and thus highlight cadherin-11 as a potential therapeutic target for the management of obesity.


Assuntos
Tecido Adiposo/fisiopatologia , Caderinas/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Inflamação/fisiopatologia , Adipócitos/citologia , Tecido Adiposo/metabolismo , Animais , Diferenciação Celular , Cruzamentos Genéticos , Diabetes Mellitus Experimental/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Intolerância à Glucose/metabolismo , Inflamação/metabolismo , Resistência à Insulina , Interleucina-13/metabolismo , Interleucina-33/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Camundongos Transgênicos , Obesidade/metabolismo , Fenótipo
16.
J Biol Chem ; 291(19): 10162-72, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-26984405

RESUMO

Pancreatic ß-cell dysfunction contributes to onset and progression of type 2 diabetes. In this state ß-cells become metabolically inflexible, losing the ability to select between carbohydrates and lipids as substrates for mitochondrial oxidation. These changes lead to ß-cell dedifferentiation. We have proposed that FoxO proteins are activated through deacetylation-dependent nuclear translocation to forestall the progression of these abnormalities. However, how deacetylated FoxO exert their actions remains unclear. To address this question, we analyzed islet function in mice homozygous for knock-in alleles encoding deacetylated FoxO1 (6KR). Islets expressing 6KR mutant FoxO1 have enhanced insulin secretion in vivo and ex vivo and decreased fatty acid oxidation ex vivo Remarkably, the gene expression signature associated with FoxO1 deacetylation differs from wild type by only ∼2% of the >4000 genes regulated in response to re-feeding. But this narrow swath includes key genes required for ß-cell identity, lipid metabolism, and mitochondrial fatty acid and solute transport. The data support the notion that deacetylated FoxO1 protects ß-cell function by limiting mitochondrial lipid utilization and raise the possibility that inhibition of fatty acid oxidation in ß-cells is beneficial to diabetes treatment.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Ácidos Graxos/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Acetilação , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Ácidos Graxos/genética , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Insulina/genética , Secreção de Insulina , Células Secretoras de Insulina/patologia , Camundongos , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação , Oxirredução
17.
Endocrinology ; 156(11): 4047-58, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26295369

RESUMO

Prior studies demonstrated increased plasma IgE in diabetic patients, but the direct participation of IgE in diabetes or obesity remains unknown. This study found that plasma IgE levels correlated inversely with body weight, body mass index, and body fat mass among a population of randomly selected obese women. IgE receptor FcϵR1-deficient (Fcer1a(-/-)) mice and diet-induced obesity (DIO) mice demonstrated that FcϵR1 deficiency in DIO mice increased food intake, reduced energy expenditure, and increased body weight gain but improved glucose tolerance and glucose-induced insulin secretion. White adipose tissue from Fcer1a(-/-) mice showed an increased expression of phospho-AKT, CCAAT/enhancer binding protein-α, peroxisome proliferator-activated receptor-γ, glucose transporter-4 (Glut4), and B-cell lymphoma 2 (Bcl2) but reduced uncoupling protein 1 (UCP1) and phosphorylated c-Jun N-terminal kinase (JNK) expression, tissue macrophage accumulation, and apoptosis, suggesting that IgE reduces adipogenesis and glucose uptake but induces energy expenditure, adipocyte apoptosis, and white adipose tissue inflammation. In 3T3-L1 cells, IgE inhibited the expression of CCAAT/enhancer binding protein-α and peroxisome proliferator-activated receptor-γ, and preadipocyte adipogenesis and induced adipocyte apoptosis. IgE reduced the 3T3-L1 cell expression of Glut4, phospho-AKT, and glucose uptake, which concurred with improved glucose tolerance in Fcer1a(-/-) mice. This study established two novel pathways of IgE in reducing body weight gain in DIO mice by suppressing adipogenesis and inducing adipocyte apoptosis while worsening glucose tolerance by reducing Glut4 expression, glucose uptake, and insulin secretion.


Assuntos
Metabolismo Energético/genética , Obesidade/genética , Receptores de IgE/genética , Aumento de Peso/genética , Células 3T3-L1 , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Dieta Hiperlipídica/efeitos adversos , Feminino , Expressão Gênica , Teste de Tolerância a Glucose , Humanos , Immunoblotting , Imunoglobulina E/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/etiologia , Obesidade/metabolismo , Obesidade Mórbida/sangue , PPAR gama/genética , PPAR gama/metabolismo , Interferência de RNA , Receptores de IgE/deficiência , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Diabetes ; 64(6): 1951-65, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25576059

RESUMO

Insulin signaling in the liver blunts glucose production and stimulates triglyceride biosynthesis. FoxO1 is required for cAMP induction of hepatic glucose production and is permissive for the effect of insulin to suppress this process. Moreover, FoxO1 ablation increases lipogenesis. In this study, we investigated the pleiotropic actions of FoxO1 on glucose and lipid metabolism. To this end, we reconstituted FoxO1 function in mice with a liver-specific deletion of Foxo1 using targeted knock-in of an allele encoding a DNA binding-deficient FoxO1 mutant (L-DBD). Chow-reared L-DBD mice showed defects in hepatic glucose production but normal liver triglyceride content despite increased rates of de novo lipogenesis and impaired fatty acid oxidation in isolated hepatocytes. Gene expression studies indicated that FoxO1 regulates the expression of glucokinase via a cell-nonautonomous coregulatory mechanism, while its regulation of glucose-6-phosphatase proceeds via a cell-autonomous action as a direct transcriptional activator. These conclusions support a differential regulation of hepatic glucose and lipid metabolism by FoxO1 based on the mechanism by which it alters the expression of key target genes involved in each process.


Assuntos
Alelos , Fatores de Transcrição Forkhead/metabolismo , Glucose/metabolismo , Fígado/metabolismo , Animais , Linhagem Celular , Células Cultivadas , DNA/metabolismo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Lipogênese/genética , Lipogênese/fisiologia , Masculino , Camundongos , Ligação Proteica
19.
Proteomics ; 15(2-3): 462-73, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25195567

RESUMO

Multiplexed isobaric tag based quantitative proteomics and phosphoproteomics strategies can comprehensively analyze drug treatments effects on biological systems. Given the role of mitogen-activated protein/extracellular signal-regulated kinase (MEK) signaling in cancer and mitogen-activated protein kinase (MAPK)-dependent diseases, we sought to determine if this pathway could be inhibited safely by examining the downstream molecular consequences. We used a series of tandem mass tag 10-plex experiments to analyze the effect of two MEK inhibitors (GSK1120212 and PD0325901) on three tissues (kidney, liver, and pancreas) from nine mice. We quantified ∼ 6000 proteins in each tissue, but significant protein-level alterations were minimal with inhibitor treatment. Of particular interest was kidney tissue, as edema is an adverse effect of these inhibitors. From kidney tissue, we enriched phosphopeptides using titanium dioxide (TiO2 ) and quantified 10 562 phosphorylation events. Further analysis by phosphotyrosine peptide immunoprecipitation quantified an additional 592 phosphorylation events. Phosphorylation motif analysis revealed that the inhibitors decreased phosphorylation levels of proline-x-serine-proline (PxSP) and serine-proline (SP) sites, consistent with extracellular-signal-regulated kinase (ERK) inhibition. The MEK inhibitors had the greatest decrease on the phosphorylation of two proteins, Barttin and Slc12a3, which have roles in ion transport and fluid balance. Further studies will provide insight into the effect of these MEK inhibitors with respect to edema and other adverse events in mouse models and human patients.


Assuntos
Benzamidas/farmacologia , Difenilamina/análogos & derivados , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Fosfopeptídeos/análise , Inibidores de Proteínas Quinases/farmacologia , Proteoma/metabolismo , Piridonas/farmacologia , Pirimidinonas/farmacologia , Sequência de Aminoácidos , Animais , Difenilamina/farmacologia , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/química , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Fosfopeptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Proteoma/química , Proteômica , Espectrometria de Massas em Tandem
20.
Cell ; 158(1): 69-83, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24995979

RESUMO

Brown fat can reduce obesity through the dissipation of calories as heat. Control of thermogenic gene expression occurs via the induction of various coactivators, most notably PGC-1α. In contrast, the transcription factor partner(s) of these cofactors are poorly described. Here, we identify interferon regulatory factor 4 (IRF4) as a dominant transcriptional effector of thermogenesis. IRF4 is induced by cold and cAMP in adipocytes and is sufficient to promote increased thermogenic gene expression, energy expenditure, and cold tolerance. Conversely, knockout of IRF4 in UCP1(+) cells causes reduced thermogenic gene expression and energy expenditure, obesity, and cold intolerance. IRF4 also induces the expression of PGC-1α and PRDM16 and interacts with PGC-1α, driving Ucp1 expression. Finally, cold, ß-agonists, or forced expression of PGC-1α are unable to cause thermogenic gene expression in the absence of IRF4. These studies establish IRF4 as a transcriptional driver of a program of thermogenic gene expression and energy expenditure.


Assuntos
Tecido Adiposo Marrom/metabolismo , Fatores Reguladores de Interferon/metabolismo , Termogênese , Fatores de Transcrição/metabolismo , Ativação Transcricional , Adipócitos/metabolismo , Tecido Adiposo Marrom/citologia , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Animais , Temperatura Baixa , AMP Cíclico/metabolismo , Metabolismo Energético , Humanos , Canais Iônicos/genética , Camundongos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Obesidade/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Magreza/metabolismo , Ativação Transcricional/efeitos dos fármacos , Proteína Desacopladora 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA