Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Toxicol ; 17(4): 487-493, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28861837

RESUMO

The MEK inhibitor trametinib was approved in 2013 for the treatment of unresectable or metastatic melanoma with a BRAF V600E mutation, the most common pathogenic mutation in melanoma. Trametinib blocks activation of ERK1/2, inhibiting cell proliferation in melanoma. ERK1/2 also protects against multiple types of cardiac insult in mouse models. Trametinib improves survival in melanoma patients, but evidence of unanticipated cardiotoxicity is emerging. Here we describe the case of a patient with metastatic melanoma who developed acute systolic heart failure after trametinib treatment and present the results of the literature review prompted by this case. A patient with no cardiac history presented with a 6.5-mm skin lesion and was found to have metastatic BRAF V600E melanoma. Combination treatment with trametinib and the BRAF inhibitor, dabrafenib, was initiated. The patient's pre-treatment ejection fraction was 55-60%. His EF declined after 13 days and that was 40% 1 month after treatment. Two months after initiating trametinib, he developed dyspnea and fatigue. We conducted a chart review in the electronic medical record. We conducted a PubMed search using trametinib/adverse effects AND ("heart failure" OR "left ventricular dysfunction" OR hypertension OR cardiotoxicity OR mortality). We also queried the FDA Adverse Events Reporting System for reports of cardiomyopathy, ejection fraction decrease, and left ventricular dysfunction associated with trametinib between January 1, 2013, and July 20, 2017. The literature search retrieved 19 articles, including clinical trials and case reports. Early clinical experience with the MEK inhibitor trametinib suggests that its clinical efficacy may be compromised by cardiotoxicity. Further studies in humans and animals are required to determine the extent of this adverse effect, as well as its underlying mechanisms.


Assuntos
Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/diagnóstico , Inibidores de Proteínas Quinases/efeitos adversos , Piridonas/efeitos adversos , Pirimidinonas/efeitos adversos , Idoso , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Melanoma/diagnóstico , Melanoma/tratamento farmacológico , Volume Sistólico/efeitos dos fármacos , Volume Sistólico/fisiologia
2.
J Biol Chem ; 286(20): 18320-30, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21454633

RESUMO

Huntington disease (HD) is a progressive neurodegenerative disorder caused by expression of polyglutamine-expanded mutant huntingtin protein (mhtt). Most evidence indicates that soluble mhtt species, rather than insoluble aggregates, are the important mediators of HD pathogenesis. However, the differential roles of soluble monomeric and oligomeric mhtt species in HD and the mechanisms of oligomer formation are not yet understood. We have shown previously that copper interacts with and oxidizes the polyglutamine-containing N171 fragment of huntingtin. In this study we report that oxidation-dependent oligomers of huntingtin form spontaneously in cell and mouse HD models. Levels of these species are modulated by copper, hydrogen peroxide, and glutathione. Mutagenesis of all cysteine residues within N171 blocks the formation of these oligomers. In cells, levels of oligomerization-blocked mutant N171 were decreased compared with native N171. We further show that a subset of the oligomerization-blocked form of glutamine-expanded N171 huntingtin is rapidly depleted from the soluble pool compared with "native " mutant N171. Taken together, our data indicate that huntingtin is subject to specific oxidations that are involved in the formation of stable oligomers and that also delay removal from the soluble pool. These findings show that inhibiting formation of oxidation-dependent huntingtin oligomers, or promoting their dissolution, may have protective effects in HD by decreasing the burden of soluble mutant huntingtin.


Assuntos
Cisteína/metabolismo , Doença de Huntington/metabolismo , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Multimerização Proteica , Animais , Células COS , Chlorocebus aethiops , Cisteína/genética , Modelos Animais de Doenças , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/patologia , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Oxirredução , Estrutura Terciária de Proteína , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA