Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cells ; 11(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35053409

RESUMO

Multiple myeloma (MM) is the second most common hematologic malignancy, which is characterized by clonal proliferation of neoplastic plasma cells in the bone marrow. This microenvironment is characterized by low oxygen levels (1-6% O2), known as hypoxia. For MM cells, hypoxia is a physiologic feature that has been described to promote an aggressive phenotype and to confer drug resistance. However, studies on hypoxia are scarce and show little conformity. Here, we analyzed the mRNA expression of previously determined hypoxia markers to define the temporal adaptation of MM cells to chronic hypoxia. Subsequent analyses of the global proteome in MM cells and the stromal cell line HS-5 revealed hypoxia-dependent regulation of proteins, which directly or indirectly upregulate glycolysis. In addition, chronic hypoxia led to MM-specific regulation of nine distinct proteins. One of these proteins is the cysteine protease legumain (LGMN), the depletion of which led to a significant growth disadvantage of MM cell lines that is enhanced under hypoxia. Thus, herein, we report a methodologic strategy to examine MM cells under physiologic hypoxic conditions in vitro and to decipher and study previously masked hypoxia-specific therapeutic targets such as the cysteine protease LGMN.


Assuntos
Cisteína Endopeptidases/genética , Terapia de Alvo Molecular , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/genética , Hipóxia Tumoral/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Hexoquinase/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lactato Desidrogenase 5/metabolismo , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Regulação para Cima/genética
2.
Cells ; 10(5)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069698

RESUMO

Recombinant adeno-associated viruses (AAV) have emerged as an important tool for gene therapy for human diseases. A prerequisite for clinical approval is an in vitro potency assay that can measure the transduction efficiency of each virus lot produced. The AAV serotypes are typical for gene therapy bind to different cell surface structures. The binding of AAV9 on the surface is mediated by terminal galactose residues present in the asparagine-linked carbohydrates in glycoproteins. However, such terminal galactose residues are rare in cultured cells. They are masked by sialic acid residues, which is an obstacle for the infection of many cell lines with AAV9 and the respective potency assays. The sialic acid residues can be removed by enzymatic digestion or chemical treatment. Still, such treatments are not practical for AAV9 potency assays since they may be difficult to standardize. In this study, we generated human cell lines (HEK293T and HeLa) that become permissive for AAV9 transduction after a knockout of the CMP-sialic acid transporter SLC35A1. Using the human aspartylglucosaminidase (AGA) gene, we show that these cell lines can be used as a model system for establishing potency assays for AAV9-based gene therapy approaches for human diseases.


Assuntos
Aspartilglucosilaminase/genética , Dependovirus/genética , Técnicas de Inativação de Genes , Terapia Genética , Lipofuscinoses Ceroides Neuronais/terapia , Proteínas de Transporte de Nucleotídeos/genética , Transdução Genética , Aspartilglucosilaminase/metabolismo , Vetores Genéticos , Células HEK293 , Células HeLa , Humanos , Lipofuscinoses Ceroides Neuronais/enzimologia , Lipofuscinoses Ceroides Neuronais/genética , Proteínas de Transporte de Nucleotídeos/metabolismo
3.
Int J Mol Sci ; 20(13)2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31247885

RESUMO

Pemphigus Vulgaris is an autoimmune disease that results in blister formation in the epidermis and in mucosal tissues due to antibodies recognizing desmosomal cadherins, mainly desmoglein-3 and -1. Studies on the molecular mechanisms of Pemphigus have mainly been carried out using the spontaneously immortalized human keratinocyte cell line HaCaT or in primary keratinocytes. However, both cell systems have suboptimal features, with HaCaT cells exhibiting a large number of chromosomal aberrations and mutated p53 tumor suppressor, whereas primary keratinocytes are short-lived, heterogeneous and not susceptible to genetic modifications due to their restricted life-span. We have here tested the suitability of the commercially available human keratinocyte cell line hTert/KER-CT as a model system for research on epidermal cell adhesion and Pemphigus pathomechanisms. We here show that hTert cells exhibit a calcium dependent expression of desmosomal cadherins and are well suitable for typical assays used for studies on Pemphigus, such as sequential detergent extraction and Dispase-based dissociation assay. Treatment with Pemphigus auto-antibodies results in loss of monolayer integrity and altered localization of desmoglein-3, as well as loss of colocalization with flotillin-2. Our findings demonstrate that hTert cells are well suitable for studies on epidermal cell adhesion and Pemphigus pathomechanisms.


Assuntos
Desmossomos/genética , Desmossomos/metabolismo , Queratinócitos/metabolismo , Pênfigo/etiologia , Pênfigo/metabolismo , Telomerase/genética , Autoanticorpos/imunologia , Biomarcadores , Adesão Celular , Linhagem Celular , Linhagem Celular Transformada , Desmossomos/imunologia , Imunofluorescência , Expressão Gênica , Humanos , Queratinócitos/imunologia , Modelos Biológicos , Pênfigo/patologia
4.
J Mol Cell Cardiol ; 126: 86-95, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30452906

RESUMO

BACKGROUND: The intercalated disc (ID) is important for cardiac remodeling and has become a subject of intensive research efforts. However, as yet the composition of the ID has still not been conclusively resolved and the role of many proteins identified in the ID, like Flotillin-2, is often unknown. The Flotillin proteins are known to be involved in the stabilization of cadherins and desmosomes in the epidermis and upon cancer development. However, their role in the heart has so far not been investigated. Therefore, in this study, we aimed at identifying the role of Flotillin-1 and Flotillin-2 in the cardiac ID. METHODS: Location of Flotillins in human and murine cardiac tissue was evaluated by fluorescent immunolabeling and co-immunoprecipitation. In addition, the effect of Flotillin knockout (KO) on proteins of the ID and in electrical excitation and conduction was investigated in cardiac samples of wildtype (WT), Flotillin-1 KO, Flotilin-2 KO and Flotilin-1/2 double KO mice. Consequences of Flotillin knockdown (KD) on cardiac function were studied (patch clamp and Multi Electrode Array (MEA)) in neonatal rat cardiomyocytes (NRCMs) transfected with siRNAs against Flotillin-1 and/or Flotillin-2. RESULTS: First, we confirmed presence in the ID and mutual binding of Flotillin-1 and Flotillin-2 in murine and human cardiac tissue. Flotillin KO mice did not show cardiac fibrosis, nor hypertrophy or changes in expression of the desmosomal ID proteins. However, protein expression of the cardiac sodium channel NaV1.5 was significantly decreased in Flotillin-1 and Flotillin-1/2 KO mice compared to WT mice. In addition, sodium current density showed a significant decrease upon Flotillin-1/2 KD in NRCMs as compared to scrambled siRNA-transfected NRCMs. MEA recordings of Flotillin-2 KD NRCM cultures showed a significantly decreased spike amplitude and a tendency of a reduced spike slope when compared to control and scrambled siRNA-transfected cultures. CONCLUSIONS: In this study, we demonstrate the presence of Flotillin-1, in addition to Flotillin-2 in the cardiac ID. Our findings indicate a modulatory role of Flotillins on NaV1.5 expression at the ID, with potential consequences for cardiac excitation.


Assuntos
Proteínas de Membrana/metabolismo , Miocárdio/metabolismo , Animais , Animais Recém-Nascidos , Conexina 43/metabolismo , Humanos , Ativação do Canal Iônico , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Ratos Wistar
5.
Cells ; 7(4)2018 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-29642469

RESUMO

Cell-matrix adhesion and cell migration are physiologically important processes that also play a major role in cancer spreading. In cultured cells, matrix adhesion depends on integrin-containing contacts such as focal adhesions. Flotillin-1 and flotillin-2 are frequently overexpressed in cancers and are associated with poor survival. Our previous studies have revealed a role for flotillin-2 in cell-matrix adhesion and in the regulation of the actin cytoskeleton. We here show that flotillins are important for cell migration in a wound healing assay and influence the morphology and dynamics of focal adhesions. Furthermore, anchorage-independent growth in soft agar is enhanced by flotillins. In the absence of flotillins, especially flotillin-2, phosphorylation of focal adhesion kinase and extracellularly regulated kinase is diminished. Flotillins interact with α-actinin, a major regulator of focal adhesion dynamics. These findings are important for understanding the molecular mechanisms of how flotillin overexpression in cancers may affect cell migration and, especially, enhance metastasis formation.

6.
Biochim Biophys Acta Mol Basis Dis ; 1864(3): 668-675, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29247835

RESUMO

Aspartylglucosaminuria (AGU) is a lysosomal storage disorder caused by mutations in the gene for aspartylglucosaminidase (AGA). This enzyme participates in glycoprotein degradation in lysosomes. AGU results in progressive mental retardation, and no curative therapy is currently available. We have here characterized the consequences of AGA gene mutations in a compound heterozygous patient who exhibits a missense mutation producing a Ser72Pro substitution in one allele, and a nonsense mutation Trp168X in the other. Ser72 is not a catalytic residue, but is required for the stabilization of the active site conformation. Thus, Ser72Pro exchange impairs the autocatalytic activation of the AGA precursor, and results in a considerable reduction of the enzyme activity and in altered AGA precursor processing. Betaine, which can partially rescue the AGA activity in AGU patients carrying certain missense mutations, turned out to be ineffective in the case of Ser72Pro substitution. The Trp168X nonsense allele results in complete lack of AGA polypeptide due to nonsense-mediated decay (NMD) of the mRNA. Amlexanox, which inhibits NMD and causes a translational read-through, facilitated the synthesis of a full-length, functional AGA protein from the nonsense allele. This could be demonstrated as presence of the AGA polypeptide and increased enzyme activity upon Amlexanox treatment. Furthermore, in the Ser72Pro/Trp168X expressing cells, Amlexanox induced a synergistic increase in AGA activity and polypeptide processing due to enhanced processing of the Ser72Pro polypeptide. Our data show for the first time that Amlexanox might provide a valid therapy for AGU.


Assuntos
Aminopiridinas/uso terapêutico , Aspartilglucosaminúria/tratamento farmacológico , Aspartilglucosaminúria/genética , Aspartilglucosilaminase/genética , Códon sem Sentido , Substituição de Aminoácidos , Aminopiridinas/farmacologia , Células Cultivadas , Criança , Códon sem Sentido/efeitos dos fármacos , Feminino , Células HEK293 , Células HeLa , Humanos , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Doenças por Armazenamento dos Lisossomos/genética , Mutação de Sentido Incorreto
7.
Sci Rep ; 6: 37583, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27876883

RESUMO

Aspartylglucosaminuria (AGU) is a lysosomal storage disorder that is caused by genetic deficiency of the enzyme aspartylglucosaminidase (AGA) which is involved in glycoprotein degradation. AGU is a progressive disorder that results in severe mental retardation in early adulthood. No curative therapy is currently available for AGU. We have here characterized the consequences of a novel AGU mutation that results in Thr122Lys exchange in AGA, and compared this mutant form to one carrying the worldwide most common AGU mutation, AGU-Fin. We show that T122K mutated AGA is expressed in normal amounts and localized in lysosomes, but exhibits low AGA activity due to impaired processing of the precursor molecule into subunits. Coexpression of T122K with wildtype AGA results in processing of the precursor into subunits, implicating that the mutation causes a local misfolding that prevents the precursor from becoming processed. Similar data were obtained for the AGU-Fin mutant polypeptide. We have here also identified small chemical compounds that function as chemical or pharmacological chaperones for the mutant AGA. Treatment of patient fibroblasts with these compounds results in increased AGA activity and processing, implicating that these substances may be suitable for chaperone mediated therapy for AGU.


Assuntos
Aspartilglucosaminúria/tratamento farmacológico , Chaperonas Moleculares/uso terapêutico , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/uso terapêutico , Sequência de Aminoácidos , Aspartilglucosaminúria/enzimologia , Aspartilglucosilaminase/química , Aspartilglucosilaminase/genética , Sequência de Bases , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Masculino , Chaperonas Moleculares/farmacologia , Proteínas Mutantes/metabolismo , Mutação/genética , Bibliotecas de Moléculas Pequenas/farmacologia
8.
Sci Rep ; 6: 28820, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27346727

RESUMO

Desmosomes are adhesion plaques that mediate cell-cell adhesion in many tissues, including the epidermis, and generate mechanical resistance to tissues. The extracellular domains of desmosomal cadherin proteins, desmogleins and desmocollins, are required for the interaction with cadherins of the neighbouring cells, whereas their cytoplasmic tails associate with cytoplasmic proteins which mediate connection to intermediate filaments. Disruption of desmosomal adhesion by mutations, autoantibodies or bacterial toxins results in severe human disorders of e.g. the skin and the heart. Despite the vital role of desmosomes in various tissues, the details of their molecular assembly are not clear. We here show that the two members of the flotillin protein family directly interact with the cytoplasmic tails of desmogleins. Depletion of flotillins in human keratinocytes results in weakened desmosomal adhesion and reduced expression of desmoglein-3, most likely due to a reduction in the desmosomal pool due to increased turnover. In the absence of flotillins, desmoglein-3 shows an altered localisation pattern in the cell-cell junctions of keratinocytes, which is highly similar to the localisation observed upon treatment with pemphigus vulgaris autoantibodies. Thus, our data show that flotillins, which have previously been connected to the classical cadherins, are also of importance for the desmosomal cell adhesion.


Assuntos
Desmogleína 3/metabolismo , Desmossomos/metabolismo , Queratinócitos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Pênfigo/metabolismo , Animais , Autoanticorpos/imunologia , Caderinas/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Citoplasma/metabolismo , Proteínas do Citoesqueleto/metabolismo , Epiderme/metabolismo , Humanos , Camundongos , Camundongos Knockout , Microscopia Confocal , Domínios Proteicos , RNA Interferente Pequeno/metabolismo , Ratos
9.
Int J Mol Sci ; 16(3): 6447-63, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25803106

RESUMO

Acetylcholine and its receptors regulate numerous cellular processes in keratinocytes and other non-neuronal cells. Muscarinic acetylcholine receptors are capable of transactivating the epidermal growth factor receptor (EGFR) and, downstream thereof, the mitogen-activated protein kinase (MAPK) cascade, which in turn regulates transcription of genes involved in cell proliferation and migration. We here show that cholinergic stimulation of human HaCaT keratinocytes results in increased transcription of matrix metalloproteinase MMP-3 as well as several ligands of the epidermal growth factor family. Since both metalloproteinases and the said ligands are involved in the transactivation of the EGFR, this transcriptional upregulation may provide a positive feed-forward loop for EGFR/MAPK activation. We here also show that the cholinergic EGFR and MAPK activation and the upregulation of MMP-3 and EGF-like ligands are dependent on the expression of flotillin-1 which we have previously shown to be a regulator of MAPK signaling.


Assuntos
Receptores ErbB/metabolismo , Queratinócitos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Western Blotting , Linhagem Celular , Humanos
10.
Int J Mol Sci ; 15(11): 21433-54, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25421240

RESUMO

Non-neuronal acetylcholine plays a substantial role in the human skin by influencing adhesion, migration, proliferation and differentiation of keratinocytes. These processes are regulated by the Mitogen-Activated Protein (MAP) kinase cascade. Here we show that in HaCaT keratinocytes all five muscarinic receptor subtypes are expressed, but M1 and M3 are the subtypes involved in mitogenic signaling. Stimulation with the cholinergic agonist carbachol leads to activation of the MAP kinase extracellular signal regulated kinase, together with the protein kinase Akt. The activation is fully dependent on the transactivation of the epidermal growth factor receptor (EGFR), which even appears to be the sole pathway for the muscarinic receptors to facilitate MAP kinase activation in HaCaT cells. The transactivation pathway involves a triple-membrane-passing process, based on activation of matrix metalloproteases, and extracellular ligand release; whereas phosphatidylinositol 3-kinase, Src family kinases or protein kinase C do not appear to be involved in MAP kinase activation. Furthermore, phosphorylation, ubiquitination and endocytosis of the EGF receptor after cholinergic transactivation are different from that induced by a direct stimulation with EGF, suggesting that ligands other than EGF itself mediate the cholinergic transactivation.


Assuntos
Receptores ErbB/genética , Queratinócitos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Receptores Muscarínicos/genética , Ativação Transcricional/genética , Linhagem Celular , Endocitose/genética , Ativação Enzimática/genética , Fator de Crescimento Epidérmico/genética , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosforilação/genética , Proteína Quinase C/genética , Transdução de Sinais/genética , Ubiquitinação/genética , Quinases da Família src/genética
11.
Cells ; 3(1): 129-49, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24709906

RESUMO

Flotillins are highly conserved proteins that localize into specific cholesterol rich microdomains in cellular membranes. They have been shown to be associated with, for example, various signaling pathways, cell adhesion, membrane trafficking and axonal growth. Recent findings have revealed that flotillins are frequently overexpressed in various types of human cancers. We here review the suggested functions of flotillins during receptor tyrosine kinase signaling and in cancer. Although flotillins have been implicated as putative cancer therapy targets, we here show that great caution is required since flotillin ablation may result in effects that increase instead of decrease the activity of specific signaling pathways. On the other hand, as flotillin overexpression appears to be related with metastasis formation in certain cancers, we also discuss the implications of these findings for future therapy aspects.

12.
Cell Signal ; 26(2): 198-207, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24216609

RESUMO

Flotillins are highly conserved and widely spread proteins that function in receptor tyrosine kinase signaling and membrane trafficking processes. Flotillin-1 and flotillin-2 have been shown to form both homo- and hetero-oligomers, and their cellular localization changes during signaling. Increased expression of flotillins has been detected in several types of cancer and shown to correlate with poor survival. Consistently, flotillin-2 knockout mice show a reduced formation of metastases in a breast cancer animal model. Our recent data have shown that flotillin-1 depletion results in diminished activation of the epidermal growth factor receptor and impairs its downstream signaling towards the mitogen activated protein kinases and the respective transcriptional response. Here we show that genetic ablation of flotillin-2 in a mouse model or its knockdown in cultured cells increases extracellular signal regulated kinase (ERK) activation. Furthermore, the downstream transcriptional targets of ERK and p53 are upregulated at both mRNA and protein levels. These data suggest that opposite effects are obtained upon ablation of one of the two flotillins, with flotillin-2 knockout/knockdown enhancing and flotillin-1 knockdown inhibiting ERK signaling. Due to their overexpression in cancers, flotillins may be considered as cancer therapy targets. However, our findings suggest that care needs to be taken when interfering with flotillin function, as undesired effects such as deregulation of growth-associated genes may emerge in certain cell types.


Assuntos
Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Animais , Linhagem Celular , Fosfatase 1 de Especificidade Dupla/genética , Fosfatase 1 de Especificidade Dupla/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Células HeLa , Humanos , Pulmão/metabolismo , Proteínas de Membrana/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Animais , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
13.
BMC Cancer ; 13: 575, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24304721

RESUMO

BACKGROUND: Flotillin-1 and flotillin-2 are two homologous and ubiquitously expressed proteins that are involved in signal transduction and membrane trafficking. Recent studies have reported that flotillins promote breast cancer progression, thus making them interesting targets for breast cancer treatment. In the present study, we have investigated the underlying molecular mechanisms of flotillins in breast cancer. METHODS: Human adenocarcinoma MCF7 breast cancer cells were stably depleted of flotillins by means of lentivirus mediated short hairpin RNAs. Western blotting, immunofluorescence and quantitative real-time PCR were used to analyze the expression of proteins of the epidermal growth factor receptor (EGFR) family. Western blotting was used to investigate the effect of EGFR stimulation or inhibition as well as phosphatidylinositol 3-kinase (PI3K) inhibition on mitogen activated protein kinase (MAPK) signaling. Rescue experiments were performed by stable transfection of RNA intereference resistant flotillin proteins. RESULTS: We here show that stable knockdown of flotillin-1 in MCF7 cells resulted in upregulation of EGFR mRNA and protein expression and hyperactivation of MAPK signaling, whereas ErbB2 and ErbB3 expression were not affected. Treatment of the flotillin knockdown cells with an EGFR inhibitor reduced the MAPK signaling, demonstrating that the increased EGFR expression and activity is the cause of the increased signaling. Stable ectopic expression of flotillins in the knockdown cells reduced the increased EGFR expression, demonstrating a direct causal relationship between flotillin-1 expression and EGFR amount. Furthermore, the upregulation of EGFR was dependent on the PI3K signaling pathway which is constitutively active in MCF7 cells, and PI3K inhibition resulted in reduced EGFR expression. CONCLUSIONS: This study demonstrates that flotillins may not be suitable as cancer therapy targets in cells that carry certain other oncogenic mutations such as PI3K activating mutations, as unexpected effects are prone to emerge upon flotillin knockdown which may even facilitate cancer cell growth and proliferation.


Assuntos
Receptores ErbB/metabolismo , Proteínas de Membrana/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Mama , Proliferação de Células , Cromonas/farmacologia , Endocitose , Fator de Crescimento Epidérmico/fisiologia , Receptores ErbB/genética , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Sistema de Sinalização das MAP Quinases , Células MCF-7 , Proteínas de Membrana/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Transporte Proteico , Regulação para Cima
14.
PLoS One ; 8(12): e84393, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391950

RESUMO

Flotillin-1 and flotillin-2 are two homologous, membrane raft associated proteins. Although it has been reported that flotillins are involved in cell adhesion processes and play a role during breast cancer progression, thus making them interesting future therapeutic targets, their precise function has not been well elucidated. The present study investigates the function of these proteins in cell-cell adhesion in non-malignant cells. We have used the non-malignant epithelial MCF10A cells to study the interaction network of flotillins within cell-cell adhesion complexes. RNA interference was used to examine the effect of flotillins on the structure of adherens junctions and on the association of core proteins, such as E-cadherin, with membrane rafts. We here show that the cadherin proteins of the adherens junction associate with flotillin-2 in MCF10A cells and in various human cell lines. In vitro, flotillin-1 and flotillin-2 directly interact with γ-catenin which is so far the only protein known to be present both in the adherens junction and the desmosome. Mapping of the interaction domain within the γ-catenin sequence identified the Armadillo domains 6-8, especially ARM domain 7, to be important for the association with flotillins. Furthermore, depletion of flotillins significantly influenced the morphology of the adherens junction in human epithelial MCF10A cells and altered the association of E-cadherin and γ-catenin with membrane rafts. Taken together, these observations suggest a functional role for flotillins, especially flotillin-2, in cell-cell adhesion in non-malignant epithelial cells.


Assuntos
Adesão Celular/fisiologia , Células Epiteliais/fisiologia , Proteínas de Membrana/metabolismo , gama Catenina/metabolismo , Junções Aderentes/metabolismo , Análise de Variância , Western Blotting , Caderinas/metabolismo , Linhagem Celular , Primers do DNA/genética , Imunofluorescência , Humanos , Imunoprecipitação , Plasmídeos/genética , Interferência de RNA
15.
Genes (Basel) ; 4(2): 171-97, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24705159

RESUMO

Acetylcholine is an important neurotransmitter whose effects are mediated by two classes of receptors. The nicotinic acetylcholine receptors are ion channels, whereas the muscarinic receptors belong to the large family of G protein coupled seven transmembrane helix receptors. Beyond its function in neuronal systems, it has become evident that acetylcholine also plays an important role in non-neuronal cells such as epithelial and immune cells. Furthermore, many cell types in the periphery are capable of synthesizing acetylcholine and express at least some of the receptors. In this review, we summarize the non-neuronal functions of the muscarinic acetylcholine receptors, especially those of the M2 muscarinic receptor in epithelial cells. We will review the mechanisms of signaling by the M2 receptor but also the cellular trafficking and ARF6 mediated endocytosis of this receptor, which play an important role in the regulation of signaling events. In addition, we provide an overview of the M2 receptor in human pathological conditions such as autoimmune diseases and cancer.

16.
PLoS One ; 7(9): e45514, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029064

RESUMO

Flotillin-1 and flotillin-2 are important regulators of signal transduction pathways such as growth factor signaling. Flotillin expression is increased under pathological conditions such as neurodegenerative disorders and cancer. Despite their importance for signal transduction, very little is known about the transcriptional regulation of flotillins. Here, we analyzed the expression of flotillins at transcriptional level and identified flotillins as downstream targets of the mitogen activated kinases ERK1/2. The promoter activity of flotillins was increased upon growth factor stimulation in a MAPK dependent manner. Overexpression of serum response factor or early growth response gene 1 resulted in increased flotillin mRNA and protein expression. Furthermore, both promoter activity and expression of endogenous flotillins were increased upon treatment with retinoic acid or by overexpression of the retinoid X receptor and its binding partners RARα and PPARγ. Our data indicate that the expression of flotillins, which can be detected in all cultured cells, is fine-tuned in response to various external stimuli. This regulation may be critical for the outcome of signaling cascades in which flotillins are known to be involved.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Proteínas de Membrana/genética , Receptores X de Retinoides/metabolismo , Transcrição Gênica , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Sequência Conservada , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Dados de Sequência Molecular , Mutação , PPAR gama/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Fator de Resposta Sérica/metabolismo , Fatores de Transcrição/metabolismo , Tretinoína/metabolismo
17.
J Biol Chem ; 287(10): 7265-78, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22232557

RESUMO

Our previous work has shown that the membrane microdomain-associated flotillin proteins are potentially involved in epidermal growth factor (EGF) receptor signaling. Here we show that knockdown of flotillin-1/reggie-2 results in reduced EGF-induced phosphorylation of specific tyrosines in the EGF receptor (EGFR) and in inefficient activation of the downstream mitogen-activated protein (MAP) kinase and Akt signaling. Although flotillin-1 has been implicated in endocytosis, its depletion affects neither the endocytosis nor the ubiquitination of the EGFR. However, EGF-induced clustering of EGFR at the cell surface is altered in cells lacking flotillin-1. Furthermore, we show that flotillins form molecular complexes with EGFR in an EGF/EGFR kinase-independent manner. However, knockdown of flotillin-1 appears to affect the activation of the downstream MAP kinase signaling more directly. We here show that flotillin-1 forms a complex with CRAF, MEK1, ERK, and KSR1 (kinase suppressor of RAS) and that flotillin-1 knockdown leads to a direct inactivation of ERK1/2. Thus, flotillin-1 plays a direct role during both the early phase (activation of the receptor) and late (activation of MAP kinases) phase of growth factor signaling. Our results here unveil a novel role for flotillin-1 as a scaffolding factor in the regulation of classical MAP kinase signaling. Furthermore, our results imply that other receptor-tyrosine kinases may also rely on flotillin-1 upon activation, thus suggesting a general role for flotillin-1 as a novel factor in receptor-tyrosine kinase/MAP kinase signaling.


Assuntos
Receptores ErbB/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Ativação Enzimática/fisiologia , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , Proteínas de Membrana/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Complexos Multiproteicos/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
18.
Carcinogenesis ; 33(3): 620-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22180572

RESUMO

Chronic inflammation and selenium deficiency are considered as risk factors for colon cancer. The protective effect of selenium might be mediated by specific selenoproteins, such as glutathione peroxidases (GPx). GPx-1 and -2 double knockout, but not single knockout mice, spontaneously develop ileocolitis and intestinal cancer. Since GPx2 is induced by the chemopreventive sulforaphane (SFN) via the nuclear factor E2-related factor 2 (Nrf2)/Keap1 system, the susceptibility of GPx2-KO and wild-type (WT) mice to azoxymethane and dextran sulfate sodium (AOM/DSS)-induced colon carcinogenesis was tested under different selenium states and SFN applications. WT and GPx2-KO mice were grown on a selenium-poor, -adequate or -supranutritional diet. SFN application started either 1 week before (SFN4) or along with (SFN3) a single AOM application followed by DSS treatment for 1 week. Mice were assessed 3 weeks after AOM for colitis and Nrf2 target gene expression and after 12 weeks for tumorigenesis. NAD(P)H:quinone oxidoreductases, thioredoxin reductases and glutathione-S-transferases were upregulated in the ileum and/or colon by SFN, as was GPx2 in WT mice. Inflammation scores were more severe in GPx2-KO mice and highest in selenium-poor groups. Inflammation was enhanced by SFN4 in both genotypes under selenium restriction but decreased in selenium adequacy. Total tumor numbers were higher in GPx2-KO mice but diminished by increasing selenium in both genotypes. SFN3 reduced inflammation and tumor multiplicity in both Se-adequate genotypes. Tumor size was smaller in Se-poor GPx2-KO mice. It is concluded that GPx2, although supporting tumor growth, inhibits inflammation-mediated tumorigenesis, but the protective effect of selenium does not strictly depend on GPx2 expression. Similarly, SFN requires selenium but not GPx2 for being protective.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Glutationa Peroxidase/metabolismo , Inflamação/tratamento farmacológico , Selênio/farmacologia , Tiocianatos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Azoximetano/farmacologia , Transformação Celular Neoplásica , Colite/induzido quimicamente , Colite/genética , Colo/metabolismo , Neoplasias do Colo/induzido quimicamente , Sulfato de Dextrana/farmacologia , Glutationa Peroxidase/biossíntese , Glutationa Peroxidase/genética , Glutationa Transferase/biossíntese , Íleo/metabolismo , Isotiocianatos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NAD(P)H Desidrogenase (Quinona)/biossíntese , Fator 2 Relacionado a NF-E2/biossíntese , Selênio/deficiência , Selênio/metabolismo , Sulfóxidos , Tiorredoxina Dissulfeto Redutase/biossíntese
19.
Mol Nutr Food Res ; 53(12): 1561-72, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19810021

RESUMO

Selenium is an essential micronutrient. Its recommended daily allowance is not attained by a significant proportion of the population in many countries and its intake has been suggested to affect colorectal carcinogenesis. Therefore, microarrays were used to determine how both selenoprotein and global gene expression patterns in the mouse colon were affected by marginal selenium deficiency comparable to variations in human dietary intakes. Two groups of 12 mice each were fed a selenium-deficient (0.086 mg Se/kg) or a selenium-adequate (0.15 mg Se/kg) diet. After 6 wk, plasma selenium level, liver, and colon glutathione peroxidase (GPx) activity in the deficient group was 12, 34, and 50%, respectively, of that of the adequate group. Differential gene expression was analysed with mouse 44K whole genome microarrays. Pathway analysis by GenMAPP identified the protein biosynthesis pathway as most significantly affected, followed by inflammation, Delta-Notch and Wnt pathways. Selected gene expression changes were confirmed by quantitative real-time PCR. GPx1 and the selenoproteins W, H, and M, responded significantly to selenium intake making them candidates as biomarkers for selenium status. Thus, feeding a marginal selenium-deficient diet resulted in distinct changes in global gene expression in the mouse colon. Modulation of cancer-related pathways may contribute to the higher susceptibility to colon carcinogenesis in low selenium status.


Assuntos
Colo/metabolismo , Biossíntese de Proteínas , Selênio/deficiência , Selenoproteínas/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , Animais , Colo/enzimologia , Regulação para Baixo , Glutationa Peroxidase/metabolismo , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estado Nutricional , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Mensageiro/metabolismo , Distribuição Aleatória , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Selênio/sangue , Selenoproteína W/genética , Selenoproteína W/metabolismo , Selenoproteínas/genética , Proteínas Wnt/genética
20.
Cancer Res ; 68(23): 9746-53, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19047153

RESUMO

The selenoprotein gastrointestinal glutathione peroxidase 2 (GPx2) is up-regulated in a variety of cancer cells with thus far unknown consequences. Therefore, two clones of a human colon cancer cell line (HT-29) in which GPx2 was stably knocked down by small interfering RNA (siRNA; siGPx2) were used to test whether cancer-relevant processes are affected by GPx2. The capacity to grow anchorage independently in soft agar was significantly reduced in siGPx2 cells when compared with controls (i.e., HT-29 cells stably transfected with a scramble siRNA). The weight of tumors derived from siGPx2 cells injected into nude mice was lower in 9 of 10 animals. In contrast, in a wound-healing assay, wound closure was around 50% in controls and 80% in siGPx2 cells, indicating an enhanced capacity of the knockdown cells to migrate. Similarly, invasion of siGPx2 cells in a Transwell assay was significantly increased. Migration and invasion of siGPx2 cells were inhibited by celecoxib, a cyclooxygenase-2 (COX-2)-specific inhibitor, but not by alpha-tocopherol. Selenium supplementation of cell culture medium did not influence the results obtained with siGPx2 cells, showing that none of the other selenoproteins could replace GPx2 regarding the described effects. The data show that GPx2 inhibits malignant characteristics of tumor cells, such as migration and invasion, obviously by counteracting COX-2 expression but is required for the growth of transformed intestinal cells and may, therefore, facilitate tumor cell growth. The data also shed new light on the use of selenium as a chemopreventive trace element: a beneficial effect may depend on the stage of tumor development.


Assuntos
Adenocarcinoma/enzimologia , Movimento Celular/fisiologia , Neoplasias do Colo/enzimologia , Ciclo-Oxigenase 2/fisiologia , Glutationa Peroxidase/fisiologia , Adenocarcinoma/patologia , Animais , Celecoxib , Processos de Crescimento Celular/fisiologia , Neoplasias do Colo/patologia , Ciclo-Oxigenase 2/biossíntese , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Glutationa Peroxidase/deficiência , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Nus , Invasividade Neoplásica , Pirazóis/farmacologia , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA