Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Arch Microbiol ; 206(8): 339, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958759

RESUMO

Cordyceps cicadae is recognized for its medicinal properties, attributed to bioactive constituents like polysaccharides and adenosine, which have been shown to improve kidney and liver functions and possess anti-tumor properties. Rho GTPase activating proteins (Rho GAPs) serve as inhibitory regulators of Rho GTPases in eukaryotic cells by accelerating the GTP hydrolysis of Rho GTPases, leading to their inactivation. In this study, we explored the function of the CcRga8 gene in C. cicadae, which encodes a Rho-type GTPase activating protein. Our study found that the knockout of CcRga8 resulted in a decrease in polysaccharide levels and an increase in adenosine concentration. Furthermore, the mutants exhibited altered spore yield and morphology, fruiting body development, decreased infectivity, reduced resistance to hyperosmotic stress, oxidative conditions, and cell wall inhibitors. These findings suggest that CcRga8 plays a crucial role in the development, stress response, and bioactive compound production of C. cicadae.


Assuntos
Cordyceps , Cordyceps/metabolismo , Cordyceps/genética , Cordyceps/crescimento & desenvolvimento , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Adenosina/metabolismo , Polissacarídeos/metabolismo , Carpóforos/crescimento & desenvolvimento , Carpóforos/metabolismo , Carpóforos/genética
2.
Exp Clin Endocrinol Diabetes ; 131(11): 577-582, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37922948

RESUMO

OBJECTIVE: To assess the prognostic value of clinicopathological factors as well as BRAF and TERT promoter mutations in predicting distant metastasis in patients with papillary thyroid cancer. DESIGN: The status of BRAF and TERTp mutations were available in 1,208 thyroid cancer patients who received thyroidectomy at Jiangyuan Hospital Affiliated to Jiangsu Institute of Nuclear Medicine from January 2008 to December 2021. Based on inclusion criteria, 99 distant metastasis thyroid cancers (DM-TCs) and 1055 patients without DM (Non-DM-TCs) were retrospectively reviewed. RESULTS: After univariate and multivariate analyses, a risk model was established for DM prediction based on factors: T3/T4 stage, lymph node metastasis (LNM) number over 5, and BRAF/TERT mutations (TLBT). It was defined based on the number of TLBT factors: low risk (no risk factor, n=896), intermediate risk (1 risk factor, n=199), and high risk (≥2 risk factors, n=59). Notably, compared with patients with low and intermediate risks, patients assigned to high TLBT risk have a shorter time of DM disease-free survival. Except for gene mutation, other factors were also included in the 2015 American Thyroid Association (ATA) risk guideline. Comparing with the ATA risk category, this risk model showed a better performance in predicting DM-TCs. CONCLUSIONS: This study proposes a TLBT risk classifier consisting of T3/T4 stages, LNM (n>5), and BRAF+TERTp mutations for predicting DM-TCs. TLBT risk stratification may help clinicians make personalized treatment management and follow-up strategies.


Assuntos
Telomerase , Neoplasias da Glândula Tireoide , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Estudos Retrospectivos , Telomerase/genética , Regiões Promotoras Genéticas/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/terapia , Neoplasias da Glândula Tireoide/patologia , Mutação
3.
Endocr Pathol ; 34(3): 323-332, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37572175

RESUMO

Reliable preoperative diagnosis of thyroid nodules remained challenging because of the inconclusiveness of fine-needle aspiration (FNA) cytology. In the present study, 583 formalin-fixed paraffin embedded (FFPE) thyroid nodule tissues and 161 FNA specimens were enrolled retrospectively. Then BRAF V600E, EZH1 Q571R, SPOP P94R, and ZNF148 mutations among these samples were identified using Sanger sequencing. Based on this four-gene genomic classifier, we proposed a two-step modality to diagnose thyroid nodules to differentiate benign and malignant thyroid nodules. In the FFPE group, thyroid cancers were effectively diagnosed in 37.7% (220/583) of neoplasms by the primary BRAF V600E testing, and 15.7% (57/363) of thyroid nodules could be further determined as benign by subsequent EZH1 Q571R, SPOP P94R, and ZNF148 (we called them "ESZ") mutation testing. In the FNA group, 161 BRAF wild-type specimens were classified according to The Bethesda System for Reporting Thyroid Cytopathology (TBSRTC). A total of 7 mutated samples fell within Bethesda categories III-IV, and the mutation rate of "ESZ" in Bethesda III-IV categories was 8.4%. The two-step genomic classifier could further improve thyroid nodule diagnosis, which may inform more optimal patient management.


Assuntos
Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide , Humanos , Nódulo da Glândula Tireoide/diagnóstico , Nódulo da Glândula Tireoide/genética , Nódulo da Glândula Tireoide/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Estudos Retrospectivos , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Mutação , Análise Mutacional de DNA , Complexo Repressor Polycomb 2/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
4.
Toxicol In Vitro ; 93: 105669, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37634662

RESUMO

Thyroid cancer is one of the most common endocrine malignancies. Differentiated thyroid cancer (DTC) treatment is based on the ability of thyroid follicular cells to accumulate radioactive iodide (RAI). DTC generally has a good prognosis. However, tumor dedifferentiation or defect in certain cell death mechanism occurs in a subset of DTC patients, leading to RAI resistance. Therefore, developing novel therapeutic approaches that enhance RAI sensitivity are still warranted. We found that curcumin, an active ingredient in turmeric with anti-cancer properties, rapidly accumulated in the mitochondria of thyroid cancer cells but not normal epithelial cells. Curcumin treatment triggered mitochondrial membrane depolarization, engulfment of mitochondria within autophagosomes and a robust decrease in mitochondrial mass and proteins, indicating that curcumin selectively induced mitophagy in thyroid cancer cells. In addition, curcumin-induced mitophagic cell death and its synergistic cytotoxic effect with radioiodine could be attenuated by autophagy inhibitor, 3-methyladenine (3-MA). Interestingly, the mechanism of mitophagy-inducing potential of curcumin was its unique mitochondria-targeting property, which induced a burst of SDH activity and excessive ROS production. Our data suggest that curcumin induces mitochondrial dysfunction and triggers lethal mitophagy, which synergizes with radioiodine to kill thyroid cancer cells.


Assuntos
Curcumina , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/tratamento farmacológico , Curcumina/farmacologia , Radioisótopos do Iodo , Succinato Desidrogenase/metabolismo , Mitofagia , Linhagem Celular Tumoral , Neoplasias da Glândula Tireoide/radioterapia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Mitocôndrias/metabolismo
5.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446367

RESUMO

WUSCHEL (WUS) is a crucial transcription factor in regulating plant stem cell development, and its expression can also improve genetic transformation. However, the ectopic expression of WUS always causes pleiotropic effects during genetic transformation, making it important to understand the regulatory mechanisms underlying these phenomena. In our study, we found that the transient expression of the maize WUS ortholog ZmWus2 caused severe leaf necrosis in Nicotiana benthamiana. We performed transcriptomic and non-target metabolomic analyses on tobacco leaves during healthy to wilted states after ZmWus2 transient overexpression. Transcriptomic analysis revealed that ZmWus2 transformation caused active metabolism of inositol trisphosphate and glycerol-3-phosphate, while also upregulating plant hormone signaling and downregulating photosystem and protein folding pathways. Metabolomic analysis mainly identified changes in the synthesis of phenylpropanoid compounds and various lipid classes, including steroid synthesis. In addition, transcription factors such as ethylene-responsive factors (ERFs), the basic helix-loop-helix (bHLH) factors, and MYBs were found to be regulated by ZmWus2. By integrating these findings, we developed a WUS regulatory model that includes plant hormone accumulation, stress responses, lipid remodeling, and leaf necrosis. Our study sheds light on the mechanisms underlying WUS ectopic expression causing leaf necrosis and may inform the development of future genetic transformation strategies.


Assuntos
Nicotiana , Transcriptoma , Nicotiana/genética , Nicotiana/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Lipídeos
6.
Pathol Res Pract ; 246: 154495, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37172523

RESUMO

BACKGROUND: Due to dedifferentiation of tumor cells, manifested by a decreased expression of iodide-handling genes in thyrocytes, some thyroid carcinomas lose their capability for radioiodine concentration and gradually develop radioactive iodine (RAI) resistance. This work aimed to investigate the role of tumor microenvironment (TME) in the process of tumor cell dedifferentiation. MATERIALS AND METHODS: Bioinformatic analyses and subsequent immunohistochemistry (IHC) and western blot assays were performed in papillary thyroid carcinoma (PTC) and matched normal tissue. ELISA was used to assess the secretion of cytokines under the stimulation of pharmacological endoplasmic reticulum (ER) stress inducer. RESULTS: Higher levels of pro-inflammatory cytokines, interleukin 6 (IL-6) and (C-X-C motif chemokine ligand 8 (CXCL8), were found in thyroid cancer tissues compared with matched normal tissues. ER stress, induced by stressful environmental stimuli, such as nutrient deprivation and hypoxia, occurred in thyroid tumors. Classic ER stress inducers, thapsigargin (Tg) and tunicamycin (Tm), promoted the expression of IL6 and CXCL8 in thyroid cancer cells at mRNA and protein levels. Of note, rIL-6 and rCXCL8 promoted the dedifferentiation of thyroid cancer cells or even non-transformed cells in an autocrine/paracrine manner, weakening radioiodine uptake ability of thyroid cancer cells. Intriguingly, sorafenib, a multiple kinase inhibitor (MKI), could potently suppress not only ER stress-induced but also basal expressions of IL-6 and CXCL8 in thyroid cancer cells. CONCLUSIONS: The inflammatory TME could regulate cell dedifferentiation, leading to loss of thyroid-specific gene expressions, through reciprocal interaction between thyroid tumor cells and follicular cells. Our study provides a new perspective on the mechanisms of how inflammatory TME affects DTC dedifferentiation.


Assuntos
Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/patologia , Radioisótopos do Iodo , Iodetos , Interleucina-6 , Microambiente Tumoral
7.
J Clin Oncol ; 41(6): 1296-1306, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36378996

RESUMO

PURPOSE: To explore the novel diagnostic value of epigenetic imprinting biomarkers in thyroid nodules. PATIENTS AND METHODS: A total of 550 patients with fine-needle aspiration (FNA)-evaluated and histopathologically confirmed thyroid nodules were consecutively recruited from eight medical centers. Quantitative chromogenic imprinted gene in situ hybridization (QCIGISH) was used to assess the allelic expression of imprinted genes SNRPN and HM13, on the basis of which a diagnostic grading model for thyroid nodules was developed. The model was retrospectively trained on 124 postsurgical thyroid samples, optimized on 32 presurgical FNA samples, and prospectively validated on 394 presurgical FNA samples. Blinded central review-based cytopathologic and histopathologic diagnoses were used as the reference standard. RESULTS: For thyroid malignancy, the QCIGISH test achieved an overall diagnostic sensitivity of 100% (277/277), a specificity of 91.5% (107/117; 95% CI, 86.4 to 96.5), a positive predictive value (PPV) of 96.5% (95% CI, 94.4 to 98.6), and a negative predictive value (NPV) of 100% in the prospective validation, with a diagnostic accuracy of 97.5% (384/394; 95% CI, 95.9 to 99.0). QCIGISH demonstrated a PPV of 97.8% (95% CI, 94.7 to 100) and NPV of 100%, with a diagnostic accuracy of 98.2% (111/113; 95% CI, 95.8 to 100), for indeterminate Bethesda III-V thyroid nodules. QCIGISH demonstrated a PPV of 96.6% (95% CI, 91.9 to 100) and a NPV of 100%, with a diagnostic accuracy of 97.5% (79/81; 95% CI, 94.2 to 100), for Bethesda III-IV. For Bethesda VI, QCIGISH showed a 100% (184/184) accuracy. CONCLUSION: This imprinting biomarker-based test can effectively distinguish malignant from benign thyroid nodules. The high PPV and NPV make the test both an excellent rule-in and rule-out diagnostic tool. With such a diagnostic performance and its technical simplicity, this novel thyroid molecular test is clinically widely applicable.


Assuntos
Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide , Humanos , Nódulo da Glândula Tireoide/diagnóstico , Nódulo da Glândula Tireoide/genética , Nódulo da Glândula Tireoide/patologia , Estudos Retrospectivos , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Biomarcadores , Epigênese Genética
8.
Phytother Res ; 36(2): 938-950, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35076979

RESUMO

Capsaicin (CAP) is a well-known anti-cancer agent. Recently, we reported capsaicin-induced apoptosis in anaplastic thyroid cancer (ATC) cells. It is well accepted that the generation of cancer stem cells (CSCs) is responsible for the dedifferentiation of ATC, the most lethal subtype of thyroid cancer with highly dedifferentiation status. Whether CAP inhibited the ATC growth through targeting CSCs needed further investigation. In the present study, CAP was found to induce autophagy in ATC cells through TRPV1 activation and subsequent calcium influx. Meanwhile, CAP dose-dependently decreased the sphere formation capacity of ATC cells. The stemness-inhibitory effect of CAP was further by extreme limiting dilution analysis (ELDA). CAP significantly decreased the protein level of OCT4A in both 8505C and FRO cells. Furthermore, CAP-induced OCT4A degradation was reversed by autophagy inhibitors 3-MA and chloroquine, BAPTA-AM and capsazepine, but not proteasome inhibitor MG132. Collectively, our study firstly showed CAP suppressed the stemness of ATC cells partially via calcium-dependent autophagic degradation of OCT4A. Our study lent credence to the feasible application of capsaicin in limiting ATC stemness.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Apoptose , Autofagia , Capsaicina/farmacologia , Linhagem Celular Tumoral , Humanos , Lisossomos , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologia
9.
Toxicol In Vitro ; 78: 105254, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34634291

RESUMO

Curcumin, a polyphenolic compound, is a well-known anticancer agent, although its poor bioavailability remains a big concern. Recent studies suggest that autophagy-targeted therapy may be a useful adjunct treatment for patients with thyroid cancer. Curcumin acts as an autophagy inducer on many cancer cells. However, little is known about the exact role of curcumin on thyroid cancer cells. In the present study, curcumin significantly inhibited the growth of thyroid cancer cells. Autophagy was markedly induced by curcumin treatment as evidenced by an increase in LC3-II conversion, beclin-1 accumulation, p62 degradation as well as the increased formation of acidic vesicular organelles (AVOs). 3-MA, an autophagy inhibitor, partially rescued thyroid cancer cells from curcumin-induced cell death. Additionally, curcumin was found to exert selective cytotoxicity on thyroid cancer cells but not normal epithelial cells and acted as an autophagy inducer through activation of MAPK while inhibition of mTOR pathways. Hyperactivation of the AKT/mTOR axis was observed in the majority of PTC samples we tested, and thyroid cancer cell lines along with cancer tissue specimens sustained a low basal autophagic activity. Taken together, our results provide new evidence that inducing autophagic cell death may serve as a potential anti-cancer strategy to handle thyroid cancer.


Assuntos
Antineoplásicos/farmacologia , Morte Celular Autofágica/efeitos dos fármacos , Curcumina/farmacologia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Adenina/análogos & derivados , Adenina/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
10.
Eur J Clin Invest ; 52(4): e13721, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34855206

RESUMO

BACKGROUND: Repeated radiotherapy brings limited benefits and significant side effects for differentiated thyroid cancer patients (DTC) with radioiodine refractory (RAIR). However, the prognostic role of preoperative thyroglobulin (pre-Tg) in predicting RAIR is unclear. METHODS: In the present study, data were retrospectively reviewed from 5173 patients who underwent radiotherapy in the Jiangyuan Hospital from January 2006 to December 2020. RESULTS: A total of 1,102 patients with or without repeated radiotherapy were compared (repeated vs. single radiotherapy; n = 199 vs. n = 903). Pre-Tg was significantly elevated in patients with repeated radiotherapy. After the classification of RAIR (non-RAIR, n = 786 vs. RAIR, n = 90), elevated pre-Tg was also correlated with RAIR after univariate and multivariate analyses. According to the receiver operating characteristic curve analysis, elevated pre-Tg well predicted RAIR (AUC = 0.76, CI: 0.71-0.82, p < 0.0001). To control the selection bias, the propensity score matching was used. Pre-Tg level was found to be an independent predictor of RAIR (p < 0.001, HR = 7.25, CI: 2.55-20.62). CONCLUSION: Our results indicate that markedly elevated pre-Tg level can be served as an independent predictor of RAIR-DTC, which can guide a more precise treatment strategy and/or an active surveillance during surgery and follow-ups.


Assuntos
Radioisótopos do Iodo/uso terapêutico , Tireoglobulina/sangue , Neoplasias da Glândula Tireoide/sangue , Neoplasias da Glândula Tireoide/radioterapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Período Pré-Operatório , Estudos Retrospectivos , Falha de Tratamento
11.
J Mol Cell Biol ; 13(11): 791-807, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34751390

RESUMO

Anaplastic thyroid cancer (ATC) is a rare but highly lethal disease. ATCs are resistant to standard therapies and are extremely difficult to manage. The stepwise cell dedifferentiation results in the impairment of the iodine-metabolizing machinery and the infeasibility of radioiodine treatment in ATC. Hence, reinducing iodine-metabolizing gene expression to restore radioiodine avidity is considered as a promising strategy to fight against ATC. In the present study, capsaicin (CAP), a natural potent transient receptor potential vanilloid type 1 (TRPV1) agonist, was discovered to reinduce ATC cell differentiation and to increase the expression of thyroid transcription factors (TTFs including TTF-1, TTF-2, and PAX8) and iodine-metabolizing proteins, including thyroid-stimulating hormone receptor (TSHR), thyroid peroxidase, and sodium iodine symporter (NIS), in two ATC cell lines, 8505C and FRO. Strikingly, CAP treatment promoted NIS glycosylation and its membrane trafficking, resulting in a significant enhancement of radioiodine uptake of ATC cells in vitro. Mechanistically, CAP-activated TRPV1 channel and subsequently triggered Ca2+ influx, cyclic adenosine monophosphate (cAMP) generation, and cAMP-responsive element-binding protein (CREB) signal activation. Next, CREB recognized and bound to the promoter of SLC5A5 to facilitate its transcription. Moreover, the TRPV1 antagonist CPZ, the calcium chelator BAPTA, and the PKA inhibitor H-89 effectively alleviated the redifferentiation exerted by CAP, demonstrating that CAP might improve radioiodine avidity through the activation of the TRPV1‒Ca2+/cAMP/PKA/CREB signaling pathway. In addition, our study indicated that CAP might trigger a novel cascade to redifferentiate ATC cells and provide unprecedented opportunities for radioiodine therapy in ATC, bypassing canonical TSH‒TSHR pathway.


Assuntos
Iodo , Simportadores , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Capsaicina/farmacologia , Linhagem Celular Tumoral , Humanos , Iodo/metabolismo , Radioisótopos do Iodo/metabolismo , Radioisótopos do Iodo/uso terapêutico , Receptores da Tireotropina/metabolismo , Sódio/metabolismo , Simportadores/genética , Simportadores/metabolismo , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Tireotropina/metabolismo
12.
JAMA Oncol ; 8(2): 242-250, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34913959

RESUMO

IMPORTANCE: Patients with radioactive iodine-refractory differentiated thyroid cancer (RAIR-DTC) have a poor prognosis and limited treatment options. OBJECTIVE: To assess the efficacy and safety of apatinib, a highly selective vascular endothelial growth factor (VEGFR-2) inhibitor, in patients with progressive locally advanced or metastatic RAIR-DTC. DESIGN, SETTING, AND PARTICIPANTS: This randomized, double-blind, placebo-controlled, phase 3 trial (Efficacy of Apatinib in Radioactive Iodine-refractory Differentiated Thyroid Cancer [REALITY]) was conducted in 92 patients with progressive locally advanced or metastatic RAIR-DTC between February 17, 2017, and March 2, 2020, at 21 sites within China, and the data cutoff date for this analysis was March 25, 2020. INTERVENTIONS: Patients were randomly assigned (1:1) to apatinib, 500 mg/d, or placebo. Patients who developed progression while receiving placebo were allowed to cross over to apatinib. MAIN OUTCOMES AND MEASURES: The primary end point was investigator-assessed progression-free survival (PFS). Secondary end points included overall survival, objective response rate (ORR), disease control rate (DCR), duration of response, time to objective response, and safety. Intention-to-treat analyses were performed to evaluate efficacy. RESULTS: Of the 92 patients included in the trial, 56 were women (60.9%); mean (SD) age at baseline was 55.7 (10.6) years. Patients were randomized to the apatinib (n = 46) or placebo (n = 46) group. The median follow-up duration was 18.1 (IQR, 12.7-22.2) months. The median PFS was 22.2 (95% CI, 10.91-not reached) months for apatinib vs 4.5 (95% CI, 1.94-9.17) months for placebo (hazard ratio, 0.26; 95% CI, 0.14-0.47; P < .001). The confirmed ORR was 54.3% (95% CI, 39.0%-69.1%) and the DCR was 95.7% (95% CI, 85.2%-99.5%) in the apatinib group vs an ORR of 2.2% (95% CI, 0.1%-11.5%) and DCR of 58.7% (95% CI, 43.2%-73.0%) in the placebo group. The median overall survival was not reached for apatinib (95% CI, 26.25-not reached) and was 29.9 months (95% CI, 18.96-not reached) for placebo (hazard ratio, 0.42; 95% CI, 0.18-0.97; P = .04). The most common grade 3 or higher-level treatment-related adverse events in the apatinib group were hypertension (16 [34.8%]), hand-foot syndrome (8 [17.4%]), proteinuria (7 [15.2%]), and diarrhea (7 [15.2%])-none of which occurred in the placebo group. CONCLUSIONS AND RELEVANCE: The REALITY trial met its primary end point of PFS at the prespecified interim analysis. Apatinib showed significant clinical benefits in both prolonged PFS and overall survival with a manageable safety profile in patients with progressive locally advanced or metastatic RAIR-DTC. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03048877.


Assuntos
Antineoplásicos , Piridinas , Neoplasias da Glândula Tireoide , Idoso , Antineoplásicos/uso terapêutico , Feminino , Humanos , Radioisótopos do Iodo , Masculino , Pessoa de Meia-Idade , Piridinas/uso terapêutico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/radioterapia
13.
Nat Commun ; 12(1): 5318, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518541

RESUMO

Identifying transcription factors (TFs) whose DNA bindings are altered by genetic variants that regulate susceptibility genes is imperative to understand transcriptional dysregulation in disease etiology. Here, we develop a statistical framework to analyze extensive ChIP-seq and GWAS data and identify 22 breast cancer risk-associated TFs. We find that, by analyzing genetic variations of TF-DNA bindings, the interaction of FOXA1 with co-factors such as ESR1 and E2F1, and the interaction of TFs with chromatin features (i.e., enhancers) play a key role in breast cancer susceptibility. Using genetic variants occupied by the 22 TFs, transcriptome-wide association analyses identify 52 previously unreported breast cancer susceptibility genes, including seven with evidence of essentiality from functional screens in breast relevant cell lines. We show that FOXA1 and co-factors form a core TF-transcriptional network regulating the susceptibility genes. Our findings provide additional insights into genetic variations of TF-DNA bindings (particularly for FOXA1) underlying breast cancer susceptibility.


Assuntos
Neoplasias da Mama/genética , DNA de Neoplasias/genética , Fator de Transcrição E2F1/genética , Receptor alfa de Estrogênio/genética , Predisposição Genética para Doença , Fator 3-alfa Nuclear de Hepatócito/genética , Transcriptoma , Sequência de Bases , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cromatina/química , Cromatina/metabolismo , DNA de Neoplasias/metabolismo , Fator de Transcrição E2F1/metabolismo , Elementos Facilitadores Genéticos , Receptor alfa de Estrogênio/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Células MCF-7 , Ligação Proteica , Risco
14.
Food Funct ; 12(18): 8260-8273, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34323243

RESUMO

Radioactive iodine (RAI) is commonly used to treat differentiated thyroid cancer (DTC). A major challenge is the dedifferentiation of DTC with the loss of radioiodine uptake. Patients with distant metastases have persistent or recurrent disease and develop resistance to RAI therapy due to tumor dedifferentiation. Hence, tumor redifferentiation to restore sensitivity to RAI therapy is considered a promising strategy to overcome RAI resistance. In the present study, curcumin, a natural polyphenolic compound, was found to re-induce cell differentiation and increase the expression of thyroid-specific transcription factors, TTF-1, TTF-2 and transcriptional factor paired box 8 (PAX8), and iodide-metabolizing proteins, including thyroid stimulating hormone receptor (TSHR), thyroid peroxidase (TPO) and sodium iodide symporter (NIS) in dedifferentiated thyroid cancer cell lines, BCPAP and KTC-1. Importantly, curcumin enhanced NIS glycosylation and its membrane trafficking, resulting in a significant improvement of radioiodine uptake in vitro. Additionally, AKT knockdown phenocopied the restoration of thyroid-specific gene expression; however, ectopic expressed AKT inhibited curcumin-induced up-regulation of NIS protein, demonstrating that curcumin might improve radioiodine sensitivity via the inhibition of the PI3K-AKT-mTOR signaling pathway. Our study demonstrates that curcumin could represent a promising adjunctive therapy for restoring iodide avidity and improve radioiodine therapeutic efficacy in patients with RAI-refractory thyroid carcinoma.


Assuntos
Curcumina/farmacologia , Radioisótopos do Iodo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Simportadores/agonistas , Simportadores/metabolismo , Linhagem Celular Tumoral , Membrana Celular , Sobrevivência Celular , Citoplasma , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Fosfatidilinositol 3-Quinases/genética , Transporte Proteico , Neoplasias da Glândula Tireoide , Transcriptoma
15.
Phytother Res ; 35(6): 3428-3443, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33751676

RESUMO

It is widely accepted that anaplastic thyroid carcinoma (ATC), a rare, extremely aggressive malignant, is enriched by cancer stem cells (CSCs), which are closely related to the pathogenesis of ATC. In the present study, we demonstrated that diallyl trisulphide (DATS), a well-known hydrogen sulphide (H2 S) donor, suppressed sphere formation and restored the expression of iodide-metabolizing genes in human ATC cells, which were associated with H2 S generation. Two other H2 S donors, NaHS and GYY4137, could also suppress the self-renewal properties of ATC cells in vitro. Compared with normal thyroid tissues and papillary thyroid carcinomas (PTCs), the elevated expressions of SOX2 and MYC, two cancer stem cell markers, in ATCs were validated in the combined Gene Expression Omnibus (GEO) cohort. DATS decreased the expression of SOX2, which was mediated by H2 S generation. Furthermore, knockdown of AKT or inhibition of AKT by DATS led to a decrease of SOX2 expression in ATC cells. AKT knockdown phenocopied restoration of thyroid-specific gene expression in ATC cells. Our data suggest that H2 S donors treatment can compromise the stem cell phenotype and restore thyroid-specific gene expression of ATC cells by targeting AKT-SOX2 pathway, which may serve as a therapeutic strategy to intervene the CSC progression of ATC.


Assuntos
Compostos Alílicos/farmacologia , Sulfetos/farmacologia , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Células-Tronco Neoplásicas/patologia , Fenótipo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Câncer Papilífero da Tireoide/tratamento farmacológico , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia
16.
Biochem Biophys Res Commun ; 551: 46-53, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33714759

RESUMO

Anaplastic thyroid cancer (ATC) is a rare but highly lethal disease. So far, there is no available established treatment which can prolong its survival. In this regard, effective therapies are urgently needed. Vitamin C widely serves as an anti-cancer agent. However, the potential effects of vitamin C against thyroid tumorigenesis remained unclear. The present study demonstrated that vitamin C could significantly inhibit ATC cells growth through ferroptosis activation, evidenced by the GPX4 inactivation, ROS accumulation and iron-dependent lipid peroxidation. Our results demonstrated that vitamin C treatment induced ferritinophagy and subsequent degradation of ferritin, leading to the release of free iron. Excessive iron further triggered ROS generation via Fenton reaction. The positive feedback mediated by ROS and iron sustained lipid peroxidation and further resulted in ferroptosis of ATC cells. The better understanding of the anti-cancer mechanisms of vitamin C provides a potential strategy for ATC therapy.


Assuntos
Ácido Ascórbico/farmacologia , Autofagia/efeitos dos fármacos , Ferritinas/metabolismo , Ferroptose/efeitos dos fármacos , Carcinoma Anaplásico da Tireoide/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ácido Ascórbico/uso terapêutico , Carcinogênese/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos , Estresse Oxidativo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Carcinoma Anaplásico da Tireoide/metabolismo
17.
Hum Mol Genet ; 30(5): 321-330, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33481017

RESUMO

Most genetic variants for colorectal cancer (CRC) identified in genome-wide association studies (GWAS) are located in intergenic regions, implying pathogenic dysregulations of gene expression. However, comprehensive assessments of target genes in CRC remain to be explored. We conducted a multi-omics analysis using transcriptome and/or DNA methylation data from the Genotype-Tissue Expression, The Cancer Genome Atlas and the Colonomics projects. We identified 116 putative target genes for 45 GWAS-identified variants. Using summary-data-based Mendelian randomization approach (SMR), we demonstrated that the CRC susceptibility for 29 out of the 45 CRC variants may be mediated by cis-effects on gene regulation. At a cutoff of the Bonferroni-corrected PSMR < 0.05, we determined 66 putative susceptibility genes, including 39 genes that have not been previously reported. We further performed in vitro assays for two selected genes, DIP2B and SFMBT1, and provide functional evidence that they play a vital role in colorectal carcinogenesis via disrupting cell behavior, including migration, invasion and epithelial-mesenchymal transition. Our study reveals a large number of putative novel susceptibility genes and provides additional insight into the underlying mechanisms for CRC genetic risk loci.


Assuntos
Carcinogênese/genética , Neoplasias Colorretais/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Proteínas do Tecido Nervoso/genética , Proteínas Repressoras/genética , Transcriptoma , Linhagem Celular Tumoral , Proliferação de Células , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Genoma , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Fatores de Risco
18.
Gastroenterology ; 160(4): 1164-1178.e6, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33058866

RESUMO

BACKGROUND AND AIMS: Susceptibility genes and the underlying mechanisms for the majority of risk loci identified by genome-wide association studies (GWAS) for colorectal cancer (CRC) risk remain largely unknown. We conducted a transcriptome-wide association study (TWAS) to identify putative susceptibility genes. METHODS: Gene-expression prediction models were built using transcriptome and genetic data from the 284 normal transverse colon tissues of European descendants from the Genotype-Tissue Expression (GTEx), and model performance was evaluated using data from The Cancer Genome Atlas (n = 355). We applied the gene-expression prediction models and GWAS data to evaluate associations of genetically predicted gene-expression with CRC risk in 58,131 CRC cases and 67,347 controls of European ancestry. Dual-luciferase reporter assays and knockdown experiments in CRC cells and tumor xenografts were conducted. RESULTS: We identified 25 genes associated with CRC risk at a Bonferroni-corrected threshold of P < 9.1 × 10-6, including genes in 4 novel loci, PYGL (14q22.1), RPL28 (19q13.42), CAPN12 (19q13.2), MYH7B (20q11.22), and MAP1L3CA (20q11.22). In 9 known GWAS-identified loci, we uncovered 9 genes that have not been reported previously, whereas 4 genes remained statistically significant after adjusting for the lead risk variant of the locus. Through colocalization analysis in GWAS loci, we additionally identified 12 putative susceptibility genes that were supported by TWAS analysis at P < .01. We showed that risk allele of the lead risk variant rs1741640 affected the promoter activity of CABLES2. Knockdown experiments confirmed that CABLES2 plays a vital role in colorectal carcinogenesis. CONCLUSIONS: Our study reveals new putative susceptibility genes and provides new insight into the biological mechanisms underlying CRC development.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Predisposição Genética para Doença , Modelos Genéticos , Alelos , Carcinogênese/genética , Estudos de Casos e Controles , Estudos de Coortes , Neoplasias Colorretais/epidemiologia , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , RNA-Seq , Fatores de Risco , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cell Signal ; 75: 109733, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32771398

RESUMO

Anaplastic thyroid cancer (ATC) is a rare malignancy and has a poor prognosis due to its aggressive behavior and resistance to treatments. Calcium (Ca2+) serves as a ubiquitous cellular second messenger and influences several tumor behaviors. Therefore, Ca2+ modulation is expected to be a novel therapeutic target in cancers. However, whether Ca2+ modulation is effective in ATC therapy remains unknown. In this study, we reported that capsaicin (CAP), a transient receptor potential vanilloid type1 (TRPV1) agonist, inhibited the viability of anaplastic thyroid cancer cells. Capsaicin treatment triggered Ca2+ influx by TRPV1 activation, resulting in disequilibrium of intracellular calcium homeostasis. The rapidly increased cytosolic Ca2+ concentration was mirrored in the mitochondria and caused a severe condition of mitochondrial calcium overload in ATC cells. In addition, the disruption of mitochondrial calcium homeostasis caused by capsaicin led to mitochondrial dysfunction in ATC cells, as evidenced by the production of mitochondrial reactive oxygen species (ROS), depolarization of mitochondrial membrane potential (ΔΨm), and opening of mitochondrial permeability transition pore (mPTP). Next, the resulting release of cyt c into the cytosol triggered apoptosome assembly and subsequent caspase activation and apoptosis. It was worth noting that both TRPV1 antagonist (capsazepine) and calcium chelator (BAPTA) could attenuate aberrant Ca2+ homeostasis, mitochondrial dysfunction and apoptosis induced by capsaicin treatment. Thus, our study demonstrated that capsaicin induced mitochondrial calcium overload and apoptosis in ATC cells through a TRPV1-mediated pathway. The better understanding of the anti-cancer mechanisms of calcium modulation provides a potential target for the ATC therapy.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Capsaicina/farmacologia , Mitocôndrias/efeitos dos fármacos , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Cálcio/metabolismo , Linhagem Celular Tumoral , Humanos
20.
Cancer Epidemiol Biomarkers Prev ; 29(7): 1501-1508, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32439797

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, with few known risk factors and biomarkers. Several blood protein biomarkers have been linked to PDAC in previous studies, but these studies have assessed only a limited number of biomarkers, usually in small samples. In this study, we evaluated associations of circulating protein levels and PDAC risk using genetic instruments. METHODS: To identify novel circulating protein biomarkers of PDAC, we studied 8,280 cases and 6,728 controls of European descent from the Pancreatic Cancer Cohort Consortium and the Pancreatic Cancer Case-Control Consortium, using genetic instruments of protein quantitative trait loci. RESULTS: We observed associations between predicted concentrations of 38 proteins and PDAC risk at an FDR of < 0.05, including 23 of those proteins that showed an association even after Bonferroni correction. These include the protein encoded by ABO, which has been implicated as a potential target gene of PDAC risk variant. Eight of the identified proteins (LMA2L, TM11D, IP-10, ADH1B, STOM, TENC1, DOCK9, and CRBB2) were associated with PDAC risk after adjusting for previously reported PDAC risk variants (OR ranged from 0.79 to 1.52). Pathway enrichment analysis showed that the encoding genes for implicated proteins were significantly enriched in cancer-related pathways, such as STAT3 and IL15 production. CONCLUSIONS: We identified 38 candidates of protein biomarkers for PDAC risk. IMPACT: This study identifies novel protein biomarker candidates for PDAC, which if validated by additional studies, may contribute to the etiologic understanding of PDAC development.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas Sanguíneas/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA