Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small ; : e2401719, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874065

RESUMO

Considering the potential threats posed by oily wastewater to the ecosystem, it is urgently in demand to develop efficient, eco-friendly, and intelligent oil/water separation materials to enhance the safety of the water environment. Herein, an intelligent hydrogel-coated wood (PPT/PPy@DW) membrane with self-healing, self-cleaning, and oil pollution detection performances is fabricated for the controllable separation of oil-in-water (O/W) emulsions and water-in-oil (W/O) emulsions. The PPT/PPy@DW is prepared by loading polypyrrole (PPy) particles on the delignified wood (DW) membranes, further modifying the hydrogel layer as an oil-repellent barrier. The layered porous structure and selective wettability endow PPT/PPy@DW with great separation performance for various O/W emulsions (≥98.69% for separation efficiency and ≈1000 L m-2 h-1 bar-1 for permeance). Notably, the oil pollution degree of PPT/PPy@DW can be monitored in real-time based on the changed voltage generated during O/W emulsion separation, and the oil-polluted PPT/PPy@DW can be self-cleaned by soaking in water to recover its separation performance. The high affinity of PPT/PPy@DW for water makes it effective in trapping water from the mixed surfactant-stabilized W/O emulsions. The prepared eco-friendly and low-cost multifunctional hydrogel wood membrane shows promising potential in on-demand oil/water separation and provides new ideas for the functional improvement of new biomass oil/water separation membrane materials.

2.
J Environ Manage ; 358: 120888, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615399

RESUMO

Oil dispersion, a crucial process in oil transport, involves the detachment of oil droplets from slicks and their introduction into the water column, influencing subsequent oil migration and transformation. This study examines oil dispersion, considering characteristics, stability, and mechanisms, while evaluating the impact of dispersants and salinity. Results show the significant role of surfactant type in dispersants on oil dispersion characteristics, with anionic surfactants exhibiting higher sensitivity to salinity changes compared to nonionic surfactants. The dispersion efficiency varies with salinity, with anionic surfactants performing better in low salinity (<20‰) and nonionic surfactants showing superior performance at 30-35‰ salinities. Rheological analysis illustrates the breakup and coalescence of oil droplets within the shear rates of breaking waves. An increase in interfacial film rigidity impedes the coalescence of oil droplets, contributing to the dynamic stability of the oil-water hybrid system. The use of GM-2, a nonionic dispersant, results in the formation of a solid-like interface, characterized by increased elastic modulus, notably at 20‰ salinity. However, stable droplet size distribution (DSD) at 35‰ salinity for 60 h suggests droplets can remain dispersed in seawater. The enhancement of stability of oil dispersion is interpreted as the result of two mechanisms: stabilizing DSD and developing the strength of viscoelastic interfacial film. These findings offer insights into oil dispersion dynamics, highlighting the importance of surfactant selection and salinity in governing dispersion behavior, and elucidating mechanisms underlying dispersion stability.


Assuntos
Tensoativos , Tensoativos/química , Poluição por Petróleo , Salinidade , Reologia , Petróleo , Água do Mar/química
3.
ACS Appl Mater Interfaces ; 16(2): 2624-2636, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38166459

RESUMO

Using membrane materials to purify viscous watery oil from industrial production processes and accidental oil spills is of great importance but still challenging. Based on the excellent electrical conductivity and electric-thermal conversion of poly(pyrrole) (PPy), a hydrophobic PPy-modified micro-fibrillated cellulose membrane (P-CP) was successfully prepared. The size of the P-CP membrane can be customized to meet specific requirements. In this research, the membrane diameter is capable of reaching 24 cm. By applying a voltage ranging from 0 to 12 V, the surface temperature of the P-CP membrane can be elevated to roughly 120 °C. After 10 cycles of heating and cooling under 12 V voltage, the electric-thermal curves, surface hydrophobicity, and pore structure of P-CP membrane can remain stable, which suggests remarkable electric-thermal stability and reliability despite prolonged operation. The P-CP membrane shows good linearity between voltage and current (R2 = 0.997) and easy temperature control from room temperature to ∼120 °C at low supply voltage (0-12 V). Under the condition of 12 V power supply and self-gravity, the separation flux of the P-CP membrane for water-in-oil (W/O) emulsions (kerosene, diesel) is 2-3 times higher than that at room temperature, and the separation efficiency is also improved. Importantly, the P-CP membrane shows excellent separation performance for high viscosity water-in-crude oil emulsions, with a separation flux of 40 L m-2 h-1 by gravity. Compared to the situation without electricity, the separation flux of water-in-crude oil emulsion has increased four-fold. The joule heating of the P-CP membrane expands its service time and application scenarios, demonstrating its great application prospects in actual viscous oil-water emulsion separation.

4.
J Hazard Mater ; 465: 133187, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38104519

RESUMO

A quantitative understanding of spilled oil transport in a nearshore environment is challenging due to the complex physicochemical processes in aqueous conditions. The physicochemical processes involved in oil sinking mainly include oil dispersion, sediment settling, and oil-sediment interaction. For the first time, this work attempts to address the sinking mechanism in petroleum contaminant transport using structural causal models based on observed data. The effects of nearshore salinity distribution from the estuary to the ocean on those three processes are examined. The causal inference reveals sediment settling is the crucial process for oil sinking. Salinity indirectly affects oil sinking by promoting sediment settling rather than directly affecting oil-sediment interaction. The increase of salinity from 0‰ to 35‰ provides a natural enhancement for sediment settling. Notably, unbiased causal effect estimates demonstrate the strongest positive causal effect on the settling efficiency of sediments is posed by increasing oil dispersion effectiveness, with a normalized value of 1.023. The highest strength of the causal relationship between oil dispersion and sediment settling highlights the importance of the dispersing characteristics of spilled oil to sediment-facilitated oil transport. The employed logic, a data-driven method, will shed light on adopting advanced causal inference tools to unravel the complicated contaminants' transport.

5.
J Hazard Mater ; 460: 132353, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37657327

RESUMO

The frequent occurrence of oil spills has led to serious environmental pollution and ecological issues. Given the high-viscosity of crude oil, it is essential to develop sorbents with efficient viscosity reduction and sorption capacity in various environmental conditions. Herein, a superhydrophobic carboxymethyl cellulose (CMC) aerogel co-modified by MXene and graphene jointly (M-Mxene/Gr CA) with aligned channels structure was prepared. The aligned channels structure can effectively improve the longitudinal thermal conductivity and reduce the sorption resistance. Through the modification of MXene and graphene, the aerogel realized efficient photo/electro-thermal conversion, thus ensuring its adaption to various working environments. The rapid heat generation can significantly reduce the viscosity of crude oil, achieving rapid recovery. Under one sun illumination (1.0 kW/m2), the surface temperature of M-Mxene/Gr CA can reach 72.6 °C and its sorption capability for high-viscous crude oil reaches 18 g/g. Combining photo-thermal and electro-thermal (0.5 kW/m2 and 23 V), the average sorption rate of crude oil can reach 1.3 × 107 g m-3 s-1. Finally, we present a continuous sorption system to recover offshore oil spills under the assistance of a pump. This work provides a new option for tackling high-viscous offshore oil spills due to its environmental friendliness and fast sorption capacity.

6.
J Hazard Mater ; 460: 132523, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703741

RESUMO

Adsorbents play a vital role in responding to marine oil spills, yet effectively cleaning up viscous oil spills remains a technical challenge. Herein, we present a superhydrophobic oil-adsorbing felt prepared using melt-blown technology and functionally enhanced with a photoelectric composite CNT/PANI coating for effectively cleaning up high-viscosity oil spills. By virtue of its superior solar/Joule heating ability and thermally conductive fiber network, p-CNT/PANI@PP notably reduced crude oil viscosity and enhanced the oil diffusion coefficient within pores. Leveraging primarily solar heating and supplemented by Joule heating, p-CNT/PANI@PP demonstrates an impressive in-situ adsorption rate of up to 560 g/h for ultra-high-viscosity crude oil (c.a. 138000 mPa·s), alongside an adsorption capacity of 15.57 g/g. This measure enables efficient viscosity reduction and continuous day-and-night recovery of viscous crude oil, addressing the challenges posed by seasonal fluctuations in seawater temperature and adverse weather conditions. Moreover, a conveyorized collector integrated with an oil-adsorbing felt realizes continuous recovery of viscous oil spills with speed control to tackle varying thicknesses of oil film. Given the top-down material design, superior functionality, and applicability to applications, this work provides a comprehensive and feasible solution to catastrophic large-area viscous oil spills.

7.
Chemosphere ; 340: 139803, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37579821

RESUMO

Rapid and efficient recovery of oil spill is the key link for oil spill remediation, and also a great challenge. Here, the organogelator-polymerized porous matrix composed of adsorbents and organogelators can provide a new strategy for solving this problem. The gelling mechanism of aluminum 12-hydroxystearate (Al HSA) to form spherical nano micelles in solvents was investigated via UV-vis, FT-IR, and XRD. A creative method for aluminum soap-lignin gelator (OTS-AL/Al HSA) syntheses was put forward through the saponification of 12-hydroxystearic acid (HSA) and lignin via epichlorohydrin (ECH) crosslinking. By adjusting the ECH content, the growth of Al HSA nanoparticles (15-40 nm) on lignin can be realized, and the accordingly increased roughness endowed gelator with better hydrophobicity (WCA of 134.6°) before octadecyltrichlorosilane (OTS) modification. Thanks to the porous structures, the gelator powder exhibited a high sorption capacity in the range of 3.5-5.2 g g-1 for oils and organic solvents. Rheological studies demonstrated high mechanical strength of gels (>1.6 × 105 pa) and the gelator still retained 70% sorption capacity after 6 gelation-distillation cycles. The gelation characteristics of OTS-AL/Al HSA were attributed to the rapid sorption of oils by lignin and the self-assembly of Al HSA nano micelles on lignin to form an aggregated network structure trapping oils, thus realizing the synergistic effect of oil sorption-gelation.


Assuntos
Lignina , Água , Água/química , Pós , Alumínio , Sabões , Espectroscopia de Infravermelho com Transformada de Fourier , Óleos/química , Solventes/química , Géis/química
8.
J Environ Manage ; 342: 118357, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37315462

RESUMO

Intimately coupled photocatalysis and biodegradation (ICPB) systems represent a promising wastewater treatment technology. The implementation of ICPB systems for oil spill treatment is a pressing concern. In this study, we developed an ICPB system comprising BiOBr/modified g-C3N4 (M-CN) and biofilms for the treatment of oil spills. The results demonstrate that the ICPB system achieved the rapid degradation of crude oil, outperforming the single photocatalysis and biodegradation methods by degrading 89.08 ± 5.36% within 48 h. The combination of BiOBr and M-CN formed a Z-scheme heterojunction structure, enhancing the redox capacity. The interaction between the holes (h+) and the negative charge on the biofilm surface promoted the separation of electrons (e-) and h+, thereby accelerating the degradation process of crude oil. Moreover, ICPB system maintained an excellent degradation ratio after three cycles and its biofilms progressively adapted to the adverse effects of crude oil and light. The microbial community structure remained stable throughout the degradation of crude oil, with Acinetobacter and Sphingobium identified as the dominant genera in biofilms. The proliferation of the Acinetobacter genus appeared to be the main factor contributing to the promotion of crude oil degradation. Our work demonstrates that the integrated tandem strategies perhaps represent a feasible pathway toward practical crude oil degradation.


Assuntos
Petróleo , Bismuto , Biodegradação Ambiental , Biofilmes
9.
RSC Adv ; 13(15): 9933-9944, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37006363

RESUMO

The oil spreading technique relies on biosurfactant to reduce the surface tension of an oil film and form an oil spreading ring in the center, and then judges the content of biosurfactant according to the diameter of the spreading ring. However, the instability and large errors of the traditional oil spreading technique limit its further application. In this paper, we modified the traditional oil spreading technique by optimizing the oily material, image acquisition and calculation method, which improves the accuracy and stability of the quantification of biosurfactant. We screened lipopeptides and glycolipid biosurfactants for rapid and quantitative analysis of biosurfactant concentrations. By selecting areas by color done by the software to modify image acquisition, the results showed that the modified oil spreading technique has a good quantitative effect, reflected in the concentration of biosurfactant being proportional to the diameter of the sample droplet. More importantly, using the pixel ratio method instead of the diameter measurement method to optimize the calculation method, the region selection was more exact, and the accuracy of the data results was high, and the calculation efficiency was improved significantly. Finally, the contents of rhamnolipid and lipopeptide in oilfield water samples were judged by the modified oil spreading technique, the relative errors were analyzed according to the different substances as the standard, and the quantitative measurement and analysis of oilfield water samples (the produced water of Zhan 3-X24 and the injected water of the estuary oil production plant) were realized. The study provides a new perspective on the accuracy and stability of the method in the quantification of biosurfactant, and provided some theoretical and data support for the study of the microbial oil displacement technology mechanism.

10.
Environ Sci Technol ; 57(17): 7018-7028, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37083415

RESUMO

Oil spills interact with mineral particles to form oil-particle aggregates (OPAs), which promotes the oil's natural diffusion and biodegradation. We investigated the effect of bacteria on the formation and vertical migration of OPAs under different concentrations and types of particles and proposed and elucidated an oil-particle-bacteria coupling mechanism. The depth of particle penetration into oil droplets (13-17 µm) was more than twice that of the nonbacterial group. Oil that remained in the water column and deposited to the bottom decreased from 87% to 49% and increased from 14% to 15% at high/low concentration, respectively. Interestingly, the median droplet diameter showed a negative correlation (R2 = 0.83) and positive correlation (R2 = 0.60) at high/low concentration, respectively, with the relative penetration depth first proposed. We further demonstrated that bacteria increased the penetrating depth by a combination of reducing/increasing the interfacial tension, reducing the oil amount (C17-C38) in the OPAs, and increasing the particle width. These effects reduced the droplet size and ultimately changed the vertical migration of OPAs. Finally, we provided a simple assessment of the vertical distribution of OPAs in nearshore environments based on experimental data and suggested that the role of bacteria in increasing the depth of particles penetrating into the oil droplets should not be ignored. These findings will broaden the research perspective of marine oil spill migration.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Óleos , Água , Minerais
11.
Water Res ; 229: 119441, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470045

RESUMO

Fluorine pollution has become a global public health problem due to its adverse health effects. Adsorption is the primary method for removing fluoride from drinking water. However, the adsorption method has disadvantages such as difficulty in recovering the adsorbent, and the need to add additional chemicals for regeneration, thereby causing secondary pollution, which limits further industrial applications. Capacitive deionization (CDI), as an emerging water treatment technology, has attracted widespread attention due to its advantages of simple operation, low energy consumption and less environmental impact. In this study, a polypyrrole (PPy) film was prepared on a graphite substrate by electrodeposition, and then metal-organic framework Ce/Zn-BDC-NH2 (CZBN) was deposited on the PPy film by electrophoretic deposition to obtain CZBN/PPy electrode was obtained. The CZBN/PPy anode was then coupled with the MnO2 cathode for capacitive removal of fluoride in a CDI cell. Both CZBN/PPy and MnO2 electrodes exhibit pseudocapacitive behavior, which can selectively and reversibly intercalate F- (CZBN/PPy) and Na+ (MnO2) ions. As expected, the CZBN/PPy-MnO2 system exhibits excellent fluorine removal performance. In 1.2 V, 100 mg/L F- solution, the F- removal capacity can reach 55.12 mg/g. It has high F- selectivity in the presence of some common anions, and can maintain high F- removal ability even after five adsorption regeneration processes. The mechanism of F- removal was studied by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). F- was mainly removed by electrostatic interaction and ion exchange with hydroxyl. The excellent defluorination performance of the CZBN/PPy-MnO2 system makes it have good practical application prospects.


Assuntos
Polímeros , Purificação da Água , Polímeros/química , Pirróis/química , Fluoretos , Flúor , Galvanoplastia , Compostos de Manganês , Óxidos , Eletrodos , Purificação da Água/métodos
12.
J Hazard Mater ; 443(Pt A): 130131, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36240586

RESUMO

Efficient and safe recovery of high-viscosity marine crude oil spills is still a worldwide challenge. High-viscosity crude oil is difficult to be removed by traditional adsorbent materials. Although some recent developments in photothermal or electric-thermal oil-absorbing materials, the vertical heat transfer inside and the potential hazard of electrical leakage are difficult to be guaranteed. In order to overcome these problems, we polymerized dopamine (DA) in situ on the skeleton surface of the commercial melamine sponge (MS), and further coated the full-wavelength light-absorbing Fe3O4 NPs-Graphene (HF-G) on it to obtain the superhydrophobic sponge with excellent photothermal conversion effect, heat conductivity and magnetic heating capabilities (HF-G/PDA@MS). When the thickness of sponge is 5 mm, the HF-G/PDA@MS shows excellent vertical heat conductivity ability, and can absorb about 80 g/g. It also can be combined with an extra electric-heating device to achieve continuous heating to reduce the viscosity and recover crude oil at night or extreme weather. In addition, the temperature of HF-G/PDA@MS can reach about 40 °C by electromagnetic induction heater, indicating that we can use multiple energies-assisted modes to heat the HF-G/PDA@MS to. This work provides a promising solution and theoretical support for all-weather solving offshore crude oil spills pollution and recovery.


Assuntos
Petróleo , Interações Hidrofóbicas e Hidrofílicas , Água/química , Tempo (Meteorologia)
13.
Int J Biol Macromol ; 221: 1373-1383, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36151616

RESUMO

Although exopolysaccharide (EPS) has been applied to various fields, EPS for UVR-mediated oxidative stress repair still needs further exploration. In this study, a novel EPS was isolated from the fermentation medium of Bacillus sp. QDR3-1 and its yield was 4.8 g/L (pH 8.0, 12 % glucose, 30 °C and 6 % NaCl). The pure fraction (named EPS-M1) was purified by DEAE-cellulose and Sephadex G-100 column. EPS-M1 was a heteropolysaccharide composed of Man, Glc, Gal, and Fuc with a molecular weight of 33.8 kDa. Scanning electron microscopy (SEM) observed a rough surface and reticular structure of EPS-M1, and EPS-M1 formed spherical aggregates in aqueous solution observed in atomic force microscopy (AFM). Thermal analysis revealed that the degradation temperature of EPS-M1 was 306 °C. Moreover, methylation and NMR analysis determined that EPS-M1 was consisted of →3)-Manp-(1→, →2,6)-Manp-(1→, →4,6)-Glcp-(1→, →3)-Glcp-(1→, →4)-Galp-(1→, →4)-Fucp-(1→, and T-Manp-(1→. Furthermore, the cytotoxicity and the repair ability of UVR-mediated cell damage of EPS-M1 were studied with L929 cells. The results showed that EPS-M1 had good biocompatibility and it could mitigate UVR-mediated cell damage by regulating the levels of cellular reactive oxygen species (ROS), depolarization of mitochondrial membrane potential (MMP) and Caspase-3/7 activity. Overall, the structure analysis and the protective effects of EPS against L929 cells exposed to UVR provided an experimental basis for EPS in practical applications.


Assuntos
Bacillus , Polissacarídeos Bacterianos , Humanos , Polissacarídeos Bacterianos/química , Raios Ultravioleta , Peso Molecular
14.
J Hazard Mater ; 436: 129153, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739699

RESUMO

The migration of oil spills in marine environment is still not clear, especially the key processes of submerging and floating, which is an important concern for effective disposal of oil spills. In mesoscale wave tank (32 m × 0.8 m × 2 m), this study has evaluated the characteristics of oil submergence based on oil concentration and oil droplet size. The concept of effective submergence is put forward for the first time, utilized to analyze the effects of dispersant on submerging stability and associated mechanisms. The results indicate dispersants increase submerged oil concentration and promote homogeneous distribution and vertical penetration. Of concern is that dispersants increase the proportion of small oil droplets (2.5-70 µm), prolonging the residence time of oil droplets in water by delaying the floating process. Dispersants sharply reduce oil droplets size (VMD<44 µm) thus decreasing the coalescence probability. These contribute to better submerging stability. By contrast, the submerged oil, formed as oil patches, oil streamers, and large oil droplets (VMD>170 µm) when without dispersant, will float and reattach to oil slicks more quickly due to their large volume. These findings help to clarify spilled oil behaviors and provide a new idea for the research on oil submergence.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Poluição por Petróleo/análise , Água , Poluentes Químicos da Água/análise
15.
J Colloid Interface Sci ; 621: 241-253, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35461139

RESUMO

HYPOTHESIS: Major oil spills highlight the need for environmentally responsible and cost-effective recovery technologies. However, challenges remain for heavy oil spill recovery because of its high viscosity and low fluidity. To achieve this goal, an ecofriendly bio-based aerogel with efficient photothermal conversion ability was developed as a novel absorbent to achieve the fast removal of heavy oil spill by reducing the oil viscosity. EXPERIMENTS: From the renewable and abundant raw material sodium alginate (SA), hydrophobic and antibacterial SA/graphene oxide/ZIF-8 aerogel (SAGZM) was successfully fabricated via freezing-drying and chemical vapor deposition (CVD) technique. A series of characterization and tests, including aerogel structure, selective wettability, photothermal conversion ability, crude oil removal capability, and antibacterial ability, have been investigated in detail. SAGZM aerogels have rich pore structure, high porosity, excellent mechanical properties, and better photothermal conversion efficiency. FINDINGS: Under sunlight illumination, the recovery ability of SAGZM for heavy crude oil was investigated through infrared thermal imaging, oil permeability behavior analysis, and the continuous absorption for crude oil. In addition, these results are well supported by the theoretical liquid absorption coefficient. This study indicates that SAGZM is highly efficient in in situ regulating oil viscosity through its remarkably photothermal conversion capability. Importantly, SAGZM possesses an excellent antibacterial ability that is often neglected in the design of environmentally friendly materials in extending its service life. The findings of this work not only provide an eco-friendly bio-based aerogel material but also demonstrate that the photo-responsive SAGZM is efficient in heavy crude oil absorption. The proposed solar-heated SA-based aerogel provides a sustainable approach and material to solve the recovery problem of viscous crude oil spills.


Assuntos
Poluição por Petróleo , Petróleo , Alginatos/farmacologia , Antibacterianos/farmacologia , Géis/química , Petróleo/análise , Poluição por Petróleo/análise , Luz Solar , Viscosidade
16.
J Colloid Interface Sci ; 604: 272-280, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34265685

RESUMO

HYPOTHESIS: High-efficiency dispersion and enhanced biodegradation play important roles in the treatment of oily wastewater. Due to the flaws of chemical surfactants, it is necessary to study the alternative dispersants that are eco-friendly and sustainable. Therefore, applying natural attapulgite (ATP) to coat Brevibacillus parabrevis for dispersion and biodegradation was studied. EXPERIMENTS: To capture negatively charged bacteria in water, ATP was modified by positively charged Poly (allylamine hydrochloride) (PAH). The capturing capability of Poly (allylamine hydrochloride)-attapulgite (PAH-ATP) particles for bacterial cells, emulsification of PAH-ATP particles and bacteria on oil, toxicity of PAH-ATP to bacteria, biodegradation of oil, etc., were comprehensively investigated. FINDINGS: PAH-ATP modified bacteria show a highly effective emulsification for oil due to the synergism of PAH-ATP and bacteria. The emulsion stabilized by (PAH-ATP)@bacteria presents small and stable oil droplets in one month, which is benefit for the following biodegradation. Compared with bare bacteria and PAH-ATP, PAH-ATP can capture bacteria to the surface of the oil droplets which can greatly improve the degradation of oil pollution. Importantly, the presence of PAH-ATP does not inhibit the reproduction and activity of bacteria. Treatment of oily wastewater by combining natural nanoparticles and oil-degrading bacteria has the advantages of economy, environmental protection, and sustainability.


Assuntos
Brevibacillus , Poluição por Petróleo , Biodegradação Ambiental , Compostos de Magnésio , Compostos de Silício
17.
Chemosphere ; 281: 130744, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34029969

RESUMO

The employment of dispersant was an effective method to treat marine oil spill pollution. However, conventional dispersants only showed a single oil dispersion. Here, by modifying TiO2 nanoparticles with biosurfactant-Rhamnolipids (Rha), a highly efficient particulate dispersant with photocatalytic activity was developed. Rha-TiO2 showed both excellent oil spill dispersion and facilitated photodegradation for oil simultaneously. The oil droplets dispersed by Rha-TiO2 in seawater exhibited long time stability, which indicated the synergistic emulsification interactions between TiO2 and Rha in artificial sea water (ASW). The dispersion mechanism of Rha-TiO2 was analyzed, we found the TiO2 nanoparticles alone weren't effectively emulsified oil in high salinity ASW, but the addition of a small amount of Rha could modify the surface wettability of TiO2 nanoparticles to form the stable emulsion. In addition, the addition of a small amount of Rha could reduce the surface tension of the oil-water interface, which contribute to increasing the content of TiO2 nanoparticles at the oil-water interface, form a steric rigid layer around the oil droplets to prevent droplet coalescence and facilitate the further photocatalytic degradation of oil. In short, the Rha-TiO2 nanoparticles could effective disperse oil in ASW, meanwhile the TiO2 also played the role of photocatalytic degradation of oil pollution. Hence, this study developed a novel photocatalytic particulate dispersant to remediate marine oil spill and delivered a new feasible solution for practical oil spill treatment in the future.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Poluição por Petróleo/análise , Tensoativos , Titânio , Poluentes Químicos da Água/análise
18.
Langmuir ; 37(2): 882-893, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33415974

RESUMO

Bio-based aerogels serve as potential materials in separation of oil/water mixtures. Nevertheless, there remain some key challenges, including expensive/toxic organic cross-linkers, unpromising reusability, and poor performance in emulsion separation. Hereby, a novel, robust, and superhydrophobic sodium alginate/graphene oxide/silicon oxide aerogel (SA/GO/SiO2-M) was fabricated by simple calcium ion cross-linking self-assembly, freeze-drying, and chemical vapor deposition methods based on the renewable and abundant raw materials. The as-prepared SA-based aerogel possesses high absorbency for varieties of organic solvents and oils. Importantly, it shows high efficiency in the separation of surfactant-stabilized water-in-oil emulsions. SA/GO/SiO2-M aerogels display excellent reusability in both absorption and separation because of their good mechanical properties in the air and oil phase, and the mechanism in emulsion separation is discussed. This study shows that SA/GO/SiO2-M aerogels are a promising material in treating oil contaminants from different fields.

19.
Int J Biol Macromol ; 165(Pt B): 1869-1880, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33086115

RESUMO

Hydrophobic/oleophilic absorbents have been largely studied and used in recovering spilled oil. However, they still suffer from several drawbacks and two of them are poor biocompatibility and hard to thoroughly rinse. In order to address these problems, here a hydrophobic magnetic chitosan-based aerogel is fabricated via electrostatic interactions between chitosan (CS), itaconic acid (IA) and Fe3O4 nanoparticles and dip-coating in ethanol solution of Candelilla wax (CW). Due to the interconnected porous structure of chitosan-based aerogel, the magnetism of Fe3O4 nanoparticles and the hydrophobicity of CW, the prepared aerogel exhibits high absorption capacities (from 17.7 to 43.8 g/g) towards various types of organic liquids, excellent magnetic controllability with saturation magnetization of 15.93 emu/g and good water repellency with water contact angle (WCA) of 147.9°. In addition, the aerogel can also continuously separate immiscible oil/water mixtures and water-in-oil emulsions as the form of filter. More significantly, the absorbed organic liquids can be completely recovered by simply placing the aerogel in water solution of IA at 75 °C, which can avoid cleaning agent consumption. As a consequence, this renewable, biodegradable and eco-friendly oil scavenger presents a bright prospect in practical applications.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Fenômenos Magnéticos , Óleos/química , Água/química , Quitosana/química , Compostos Férricos/química , Microscopia de Força Atômica , Nanopartículas/química , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Molhabilidade
20.
Environ Sci Process Impacts ; 22(6): 1397-1407, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32426782

RESUMO

In this study, the effect of particulate matter type, temperature, oil type and weathering degree on the interaction between dispersed crude oil droplets and particulate matter was investigated. The increase of total petroleum hydrocarbon (TPH) percentage in oil-particle aggregates (OPAs) could be attributed to the increase of oil polarity or viscosity. For small size particulate matter, there was a fine dependence relationship between the TPH percentage in OPAs and the oil viscosity and the content of polar components, respectively (R2 > 0.7502). And the total organic carbon content also played an important role in the formation of OPAs. The petroleum hydrocarbon extracts of OPAs showed a decrease in short-carbon-chain components and a relative increase in long-carbon-chain compounds. Petroleum hydrocarbon compounds trapped by three types of particulate matter exhibited a similar change tendency, but there was no apparent difference in the residual TPH percentage in water.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Hidrocarbonetos , Material Particulado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA