RESUMO
AIMS: Excessive neuroinflammation mediated mainly by microglia plays a crucial role in ischemic stroke. AZD1390, an ataxia telangiectasia mutated (ATM) specific inhibitor, has been shown to promote radio-sensitization and survival in central nervous system malignancies, while the role of AZD1390 in ischemic stroke remains unknown. METHODS: Real-time PCR, western blot, immunofluorescence staining, flow cytometry and enzyme-linked immunosorbent assays were used to assess the activation of microglia and the release of inflammatory cytokines. Behavioral tests were performed to measure neurological deficits. 2,3,5-Triphenyltetrazolium chloride staining was conducted to assess the infarct volume. The activation of NF-κB signaling pathway was explored through immunofluorescence staining, western blot, co-immunoprecipitation and proximity ligation assay. RESULTS: The level of pro-inflammation cytokines and activation of NF-κB signaling pathway was suppressed by AZD1390 in vitro and in vivo. The behavior deficits and infarct size were partially restored with AZD1390 treatment in experimental stroke. AZD1390 restrict ubiquitylation and sumoylation of the essential regulatory subunit of NF-κB (NEMO) in an ATM-dependent and ATM-independent way respectively, which reduced the activation of the NF-κB pathway. CONCLUSION: AZD1390 suppressed NF-κB signaling pathway to alleviate ischemic brain injury in experimental stroke, and attenuated microglia activation and neuroinflammation, which indicated that AZD1390 might be an attractive agent for the treatment of ischemic stroke.
Assuntos
Microglia , Doenças Neuroinflamatórias , Piridinas , Quinolonas , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , NF-kappa B/metabolismo , NF-kappa B/antagonistas & inibidores , Citocinas/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
BACKGROUND: Emerging evidence has shown that myeloid cells that infiltrate into the peri-infarct region may influence the progression of ischemic stroke by interacting with microglia. Properdin, which is typically secreted by immune cells such as neutrophils, monocytes, and T cells, has been found to possess damage-associated molecular patterns (DAMPs) properties and can perform functions unrelated to the complement pathway. However, the role of properdin in modulating microglia-mediated post-stroke neuroinflammation remains unclear. METHODS: Global and conditional (myeloid-specific) properdin-knockout mice were subjected to transient middle cerebral artery occlusion (tMCAO). Histopathological and behavioral tests were performed to assess ischemic brain injury in mice. Single-cell RNA sequencing and immunofluorescence staining were applied to explore the source and the expression level of properdin. The transcriptomic profile of properdin-activated primary microglia was depicted by transcriptome sequencing. Lentivirus was used for macrophage-inducible C-type lectin (Mincle) silencing in microglia. Conditioned medium from primary microglia was administered to primary cortex neurons to determine the neurotoxicity of microglia. A series of cellular and molecular biological techniques were used to evaluate the proinflammatory response, neuronal death, protein-protein interactions, and related signaling pathways, etc. RESULTS: The level of properdin was significantly increased, and brain-infiltrating neutrophils and macrophages were the main sources of properdin in the ischemic brain. Global and conditional myeloid knockout of properdin attenuated microglial overactivation and inflammatory responses at the acute stage of tMCAO in mice. Accordingly, treatment with recombinant properdin enhanced the production of proinflammatory cytokines and augmented microglia-potentiated neuronal death in primary culture. Mechanistically, recombinant properdin served as a novel ligand that activated Mincle receptors on microglia and downstream pathways to drive primary microglia-induced inflammatory responses. Intriguingly, properdin can directly bind to the microglial Mincle receptor to exert the above effects, while Mincle knockdown limits properdin-mediated microglial inflammation. CONCLUSION: Properdin is a new medium by which infiltrating peripheral myeloid cells communicate with microglia, further activate microglia, and exacerbate brain injury in the ischemic brain, suggesting that targeted disruption of the interaction between properdin and Mincle on microglia or inhibition of their downstream signaling may improve the prognosis of ischemic stroke.
Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Camundongos , Animais , Microglia/metabolismo , AVC Isquêmico/metabolismo , Properdina/metabolismo , Properdina/farmacologia , Doenças Neuroinflamatórias , Macrófagos/metabolismo , Infarto da Artéria Cerebral Média/patologia , Lesões Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Camundongos Endogâmicos C57BLRESUMO
OBJECTIVES: To examine the characteristics of blood lymphocyte subsets in dermatomyositis-interstitial lung disease (DM-ILD) inflicted patients with positive anti-melanoma differentiation-associated gene 5 (anti-MDA5), as well as its prognosis value in this set of patients. METHODS: Data were retrospectively collected from 253 DM-ILD patients from three hospitals in China between January 2016 to January 2021. Patients were grouped into anti-MDA5 antibody positive group (MDA5+ DM-ILD) and anti-MDA5 antibody negative group (MDA5- DM-ILD) based on myositis-specific autoantibody test results. Demographic characteristics, lymphocyte subsets patterns and other clinical features were compared between the two groups. The association of lymphocyte subsets with 180-day mortality was investigated using survival analysis in MDA5+ DM-ILD. RESULTS: Out of 253 eligible patients with DM-ILD, 59 patients were anti-MDA5+ and 194 were anti-MDA5-. Peripheral blood lymphocyte count, CD3+ count, percentage of CD3+, CD3+CD4+ count, and CD3+CD8+ count was lower in MDA5+ DM-ILD than in MDA5- DM-ILD- (all P < 0.001) as well as CD3-CD19+ count (P = 0.04). In MDA5+ DM-ILD, CD3+CD8+ count ≤ 49.22 cell/µL (HR = 3.81, 95%CI [1.20,12.14]) and CD3-CD19+ count ≤ 137.64 cell/µL (HR = 3.43, 95%CI [1.15,10.24]) were independent predictors of mortality. CD3+CD8+ count ≤ 31.38 cell/µL was associated with a higher mortality risk in all DM-ILD patients (HR = 8.6, 95%CI [2.12,31.44]) after adjusting for anti-MDA5 and other clinical characteristics. CONCLUSION: Significant lymphocytes decrease was observed in MDA5+ DM-ILD patients. CD3+CD8+ cell count was associated with worse prognosis in both MDA5+ DM-ILD and all DM-ILD patients.
Assuntos
Dermatomiosite , Doenças Pulmonares Intersticiais , Humanos , Prognóstico , Estudos Retrospectivos , Helicase IFIH1 Induzida por Interferon , Doenças Pulmonares Intersticiais/complicações , Autoanticorpos , Subpopulações de Linfócitos , Contagem de LinfócitosRESUMO
Background: Neuroinflammation, which is mainly mediated by excessive microglia activation, plays a major role in ischemic stroke. Overactivated microglia secrete numerous inflammatory cytokines, causing excessive inflammatory responses and ultimately exacerbating ischemic brain injury. Hence, compounds that attenuate neuroinflammation could become promising drug candidates for ischemic stroke. Fraxetin has an anti-inflammatory effect in many inflammatory diseases. However, whether it possesses an anti-inflammatory capacity in microglia-mediated neuroinflammation after ischemic brain injury is unknown. Our study aimed to investigate the suppression effect of fraxetin on neuroinflammation in lipopolysaccharide (LPS)-activated microglia and establish whether fraxetin could alleviate ischemic brain injury in a rodent model of ischemic stroke. Methods: For the in vitro experiment, primary microglia were obtained from 1-day-old C57/BL6J mice. The cells were activated with LPS and treated with fraxetin at a non-cytotoxic concentration. Real-time PCR, enzyme-linked immunosorbent assays, and immunofluorescence staining were used to evaluate the anti-inflammatory effects of fraxetin. The potential molecular mechanisms were explored and verified through RNA-sequencing analysis, western blotting and real-time PCR. For the in vivo experiment, focal ischemia was induced by middle cerebral artery occlusion (MCAO) in 8-week-old male C57/BL6J mice. Fraxetin (5 mg/kg) or an equal volume of saline was injected into mice intraperitoneally after MCAO, and 2% 2,3,5-triphenyltetrazolium chloride staining was applied to measure infarct volume. Behavioral tests were conducted to measure neurological deficits in the mice. Real-time PCR, western blotting, and immunofluorescence staining were used to examine the expression of inflammatory cytokines and microglia activation in the ischemic penumbra. Results: Fraxetin effectively inhibited the expression of proinflammatory cytokines including inducible nitric oxide synthase, tumor necrosis factor-α, interleukin-1 beta, and interleukin-6 in LPS-activated microglia. Fraxetin also suppressed the PI3K/Akt/NF-κB signaling pathway in activated microglia, which contributed to its anti-inflammatory effects. Furthermore, the administration of fraxetin attenuated ischemic brain injury and behavioral deficits after stroke. Finally, fraxetin was found to attenuate the activation of microglia both in vitro and in vivo. Conclusions: Our results suggest that fraxetin has a suppression effect on microglia-mediated neuroinflammation, and this effect is associated with the PI3K/Akt/NF-κB signaling pathway. Fraxetin may therefore have potential neuroprotective properties for ischemic stroke.
RESUMO
BACKGROUND: Based on accumulating evidence, excessive activation of microglia-mediated inflammatory responses plays an essential role in ischemic stroke. Poncirin (Pon) exerts anti-hyperalgesic, anti-osteoporotic and anti-tumor effects on various diseases. However, the roles of Pon in microglial activation and the underlying mechanism have not been elucidated. This study aimed to explore whether Pon inhibits lipopolysaccharide (LPS)-induced microglial neuroinflammation and protects against brain ischemic injury in experimental stroke in mice. METHODS: Primary microglia cells were prepared from the cerebral cortices of 1- to 2-day-old C57BL/6J mice. Murine BV2 cells and primary microglia were stimulated with LPS and the effects of a non-cytotoxic concentration of Pon on LPS-stimulated pro-inflammatory factors were measured using real-time PCR and enzyme-linked immunosorbent assays (ELISAs). Western blot analyses were used for mechanistic studies. In an in vivo study, 8-week-old male C57BL/6J mice were subjected to focal cerebral ischemia through middle cerebral artery occlusion (MCAO). Pon (30 mg/kg, i.p.) or the same volume of saline was administered after the MCAO model was established, and the infarct volume was evaluated using 2,3,5-triphenyltetrazolium chloride (TTC) staining. We also evaluated animal behaviours, the expression of pro-inflammatory cytokines and microglial activation in the ischemic hemisphere. RESULTS: Pon prevented the release of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin (IL)-1ß, IL-6 and tumor necrosis factor-alpha (TNF-α) in both BV2 cells and primary microglia stimulated with LPS. The inhibitory effects of Pon were associated with the regulation of the ERK1/2, JNK and nuclear factor kappa B (NF-κB) signaling pathways. In mice that underwent MCAO, Pon administration decreased the lesion size and improved neurological deficits. Furthermore, Pon attenuated the production of inflammatory cytokines mainly by restraining microglial activation after ischemic stroke. CONCLUSIONS: Based on the findings from the present study, Pon provides neuroprotection through its anti-inflammatory effects on microglia and it may be a useful treatment for ischemic stroke.
RESUMO
Amyloid beta (Aß)-induced neurotoxicity and oxidative stress plays an important role in the pathogenesis of Alzheimer's disease (AD). ZL006 is shown to reduce over-produced nitric oxide and oxidative stress in ischemic stroke by interrupting the interaction of neuronal nitric oxide synthase and postsynaptic density protein 95. However, few studies are reported on the role of ZL006 in AD. To investigate whether ZL006 exerted neuroprotective effects in AD, we used Aß1-42 to treat primary cortical neurons and N2a neuroblastoma cells as an in vitro model of AD. Cortical neurons were incubated with ZL006 or dimethyl sulfoxide for 2 hours and treated with Aß1-42 or NH3â¢H2O for another 24 hours. The results of cell counting Kit-8 (CCK-8) assay and calcein-acetoxymethylester/propidium iodide staining showed that ZL006 pretreatment rescued the neuronal death induced by Aß1-42. Fluorescence and western blot assay were used to detect oxidative stress and apoptosis-related proteins in each group of cells. Results showed that ZL006 pretreatment decreased neuronal apoptosis and oxidative stress induced by Aß1-42. The results of CCK8 assay showed that inhibition of Akt or NF-E2-related factor 2 (Nrf2) in cortical neurons abolished the protective effects of ZL006. Moreover, similar results were also observed in N2a neuroblastoma cells. ZL006 inhibited N2a cell death and oxidative stress induced by Aß1-42, while inhibition of Akt or Nrf2 abolished the protective effect of ZL006. These results demonstrated that ZL006 reduced Aß1-42-induced neuronal damage and oxidative stress, and the mechanisms might be associated with the activation of Akt/Nrf2/heme oxygenase-1 signaling pathways.
RESUMO
BACKGROUND: Activation of microglial cells plays an important role in neuroinflammation after ischemic stroke. Inhibiting the activation of microglial cells has been suggested as a potential therapeutic approach in the treatment of ischemic stroke. METHODS: Oxygen-glucose deprivation in primary microglial cells and transient middle cerebral artery occlusion (MCAO) in C57BL/6 mice were used as the in vitro and in vivo ischemic stroke models. Microarray analysis was performed to investigate the overall impact of long non-coding RNAs (lncRNAs) on the inflammation status of microglial cells. RT-qPCR was used to evaluate the lncRNA levels and mRNA levels of cytokines and microglial cell markers. ELISA was taken to measure the level of cytokines. Immunofluorescence was used to observe the activation of microglial cells. Western blotting was performed to test the p65 phosphorylation. RESULTS: In this study, we showed that LncRNA-1810034E14Rik was significantly decreased in LPS-treated or oxygen-glucose deprivation-induced microglial cells. Overexpression of 1810034E14Rik decreased the infarct volume and alleviated brain damage in MCAO mice. 1810034E14Rik overexpression reduced the expression of inflammatory cytokines not only in ischemic stroke mice but also in oxygen-glucose deprivation-induced microglial cells. Moreover, 1810034E14Rik overexpression could suppress the activation of microglial cells and inhibit the phosphorylation of p65. CONCLUSIONS: LncRNA-1810034E14Rik plays an anti-inflammatory role in ischemic stroke and regulates p65 phosphorylation, making it a potential target for stroke treatment.