Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(2): 756-765, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38170958

RESUMO

In situ monitoring of the actions of correlated enzymes in living cells is crucial for expanding our understanding of disease progression and evaluating drug efficacy. However, due to the diverse functions of different enzymes, currently available methods for comprehensive analysis of these events are limited. Here, we present an in situ track-generated DNA walker for AND-gate logic imaging of telomerase (TE) and flap endonuclease 1 (FEN1) activities in live cells. TE is in charge of generating the tracks for the walking strands by extending the TE primer on a gold nanoparticle, while FEN1 is responsible for recognizing the overlapping structure formed by the walking strands and the tracks and then cleaving the fluorescent reporter to produce signals. By utilizing the DNA walker, we successfully determined the expression levels and activities of TE and FEN1 in various cancer cell lines, offering promising prospects for screening inhibitors and investigating the biomolecular mechanisms of diseases.


Assuntos
Nanopartículas Metálicas , Telomerase , Endonucleases Flap/genética , Telomerase/metabolismo , Ouro/química , Nanopartículas Metálicas/química , DNA/química
2.
Anal Chem ; 95(22): 8621-8631, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37218062

RESUMO

In situ observation of changes in the activity of marker proteins in living cells is crucial for both biomarker-based disease diagnosis and drug screening. Flap endonuclease 1 (FEN1) has been recognized as a broad-spectrum cancer biomarker and therapeutic target. However, simple and reliable methods for in situ studying the FEN1 activity changes in living cells are limited. Here, we introduce a nano firework as a fluorescent sensor to sense and report FEN1 activity changes in living cells through FEN1 recognizing the substrates on the surface of the nano firework to release and restore the fluorescence of the prequenched fluorophores. We verified the high selectivity, anti-interference ability, stability, and quantitative performance of the nano firework in tubes and living cells, respectively. A series of controlled experiments have demonstrated that the nano firework could accurately report changes in FEN1 activity in different cells, enabling "sensors in, results out" in the manner of simple addition to the cell culture medium. Using an in silico molecular docking study and experiments, we also explored the ability of the nano firework for rapid screening of FEN1 inhibitors and found two new candidate compounds myricetrin and neoisoliquritin, which could be used as FEN1 inhibitors for further research. These performances of the nano firework suggest that it can be used in high-throughput screening applications, providing a promising tool for biomarker-based new drug discovery.


Assuntos
Endonucleases Flap , Ensaios de Triagem em Larga Escala , Endonucleases Flap/genética , Simulação de Acoplamento Molecular , Biomarcadores Tumorais , DNA/química
3.
Anal Chem ; 93(27): 9593-9601, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34191475

RESUMO

DNA walkers have shown superior performance in biosensing due to their programmability to design molecular walking behaviors with specific responses to different biological targets. However, it is still challenging to make DNA walkers capable of distinguishing DNA targets with single-base differences, so that DNA walkers that can be used for circulating tumor DNA sensing are rarely reported. Herein, a flap endonuclease 1 (FEN 1)-assisted DNA walker has been proposed to achieve mutant biosensing. The target DNA is captured on a gold nanoparticle (AuNP) as a walking strand to walk by hybridizing to the track strands on the surface of the AuNP. FEN 1 is employed to report the walking events by cleaving the track strands that must form a three-base overlapping structure recognized by FEN 1 after hybridizing with the captured target DNA. Owing to the high specificity of FEN 1 for structure recognition, the one-base mutant DNA target can be discriminated from wild-type DNA. By constructing a sensitivity-enhanced DNA walker system, as low as 1 fM DNA targets and 0.1% mutation abundance can be sensed, and the theoretical detection limits for detecting the DNA target and mutation abundance achieve 0.22 fM and 0.01%, respectively. The results of epidermal growth factor receptor (EGFR) L858R mutation detection on cell-free DNA samples from 15 patients with nonsmall cell lung cancer were completely consistent with that of next-generation sequencing, indicating that our DNA walker has potential for liquid biopsy.


Assuntos
Técnicas Biossensoriais , Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante/análise , Neoplasias Pulmonares , Nanopartículas Metálicas , Endonucleases Flap , Ouro , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA