Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 83: 106384, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32199350

RESUMO

OBJECTIVE: This study aims to select the most effective anti-Rheumatoid Arthritis (RA) component of flavonoids from Daphne genkwa Sieb. et Zucc. by anti-inflammatory and immunomodulatory effects in vitro, and to elucidate the mechanism. METHODS: The anti-inflammatory and immunomodulatory effects of total flavonoids (TF) and four flavonoid components (genkwanin, hydroxygenkwanin, luteolin and apigenin) were determined by pharmacological approach in LPS-induced RAW 264.7 macrophages and ConA-induced T lymphocytes. Principal component analysis (PCA) was used to obtain the optimal anti-RA component in vitro. Western blot and real-time quantitative PCR (q-PCR) were used to explore the mechanisms. Finally, the in vitro anti-RA effect was verified by human rheumatoid arthritis fibroblast-like synoviocytes (FLSs). RESULTS: TF and four flavonoids significantly reduced the expressions of NO, iNOS, TNF-α, IL-6, IFN-γ and IL-2. PCA showed that genkwanin was the most effective anti-RA component in vitro. Genkwanin inhibited nuclear factor-κB (NF-κB) pathway by decreasing the phosphorylation levels of IKK, IκB and NF-κB, and down-regulated the expressions of iNOS, COX-2 and IL-6 mRNA. Genkwanin also inhibited the abnormal proliferation of FLSs and down-regulated the secretions of NO and IL-6. CONCLUSION: The most effective anti-RA component was genkwanin. Genkwanin exerts anti-RA effect through down-regulating the activation of NF-κB pathway and mRNA expressions of inflammatory mediators, and also by inhibiting the abnormal proliferation of FLSs and its NO and IL-6 secretion levels.


Assuntos
Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Flavonoides/uso terapêutico , Macrófagos/imunologia , Linfócitos T/imunologia , Animais , Citocinas/metabolismo , Daphne/imunologia , Humanos , Imunomodulação , Mediadores da Inflamação , Lipopolissacarídeos/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Transdução de Sinais
2.
Biomed Pharmacother ; 90: 116-121, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28343071

RESUMO

BACKGROUND: Migraine is a complex nervous system disease characterized by typical throbbing and unilateral headache, which causes severe healthy and social issues worldwide. The purpose of this study was to investigate the effect of baicalein (BAI) on the treatment of migraine. MATERIAL AND METHODS: Twenty-four rats were randomly divided equally into four groups, including a blank group, model group, positive group (ibuprofen tablets 82mg/kg), and BAI group (60mg/kg). All rats were intragastrically treated with the corresponding treatment for 10 consecutive days, and they were subcutaneously injected with NTG (10mg/kg) 1h after the last treatment, except in the blank group. After model establishment, the behaviors of all rats, including scratching head and shaking body were observed continuously for 100min. Four hours after NTG treatment, all rats were anaesthetized and the blood was collected. Thereafter, nitric oxide (NO) in plasma was determined by colorimetric method, the level of calcitonin gene-related peptide (CGRP) and endothelin (ET) were detected by radioimmunoassay method. In addition, immunohistochemistry was applied to detect c-Fos neuronal activity in trigeminal nucleus caudalis (TNC). RESULTS: Behavioral research showed that BAI administration alleviated the hyperalgesia in migraine rats. Compared with the model group, the levels of NO and CGRP in BAI administration groups were markedly decreased (p<0.01), and the levels of ET was significantly increased (p<0.01). Meanwhile, immunohistochemistry results showed that NTG treatment significantly activated c-Fos neurons while BAI treatment inhibited the expression of c-Fos. CONCLUSIONS: BAI could alleviate the migraine-like headache induced by NTG, which is related to the regulation of vasoactive substances. These findings may contribute to the further study of BAI as a potential drug for migraine pharmacotherapy.


Assuntos
Flavanonas/farmacologia , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/tratamento farmacológico , Nitroglicerina/farmacologia , Analgesia/métodos , Animais , Peptídeo Relacionado com Gene de Calcitonina/sangue , Modelos Animais de Doenças , Endotelinas/sangue , Hiperalgesia/sangue , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Masculino , Transtornos de Enxaqueca/sangue , Transtornos de Enxaqueca/metabolismo , Óxido Nítrico/sangue , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Núcleos do Trigêmeo/efeitos dos fármacos , Núcleos do Trigêmeo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA