Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5238, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898098

RESUMO

While sanguinarine has gained recognition for antimicrobial and antineoplastic activities, its complex conjugated structure and low abundance in plants impede broad applications. Here, we demonstrate the complete biosynthesis of sanguinarine and halogenated derivatives using highly engineered yeast strains. To overcome sanguinarine cytotoxicity, we establish a splicing intein-mediated temperature-responsive gene expression system (SIMTeGES), a simple strategy that decouples cell growth from product synthesis without sacrificing protein activity. To debottleneck sanguinarine biosynthesis, we identify two reticuline oxidases and facilitated functional expression of flavoproteins and cytochrome P450 enzymes via protein molecular engineering. After comprehensive metabolic engineering, we report the production of sanguinarine at a titer of 448.64 mg L-1. Additionally, our engineered strain enables the biosynthesis of fluorinated sanguinarine, showcasing the biotransformation of halogenated derivatives through more than 15 biocatalytic steps. This work serves as a blueprint for utilizing yeast as a scalable platform for biomanufacturing diverse benzylisoquinoline alkaloids and derivatives.


Assuntos
Benzofenantridinas , Isoquinolinas , Engenharia Metabólica , Saccharomyces cerevisiae , Temperatura , Isoquinolinas/metabolismo , Isoquinolinas/química , Benzofenantridinas/metabolismo , Benzofenantridinas/biossíntese , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Engenharia Metabólica/métodos , Halogenação , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética
2.
Cell Rep ; 34(1): 108594, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33406419

RESUMO

Skeletal muscle regeneration after injury is essential for maintaining muscle function throughout aging. ARHGEF3, a RhoA/B-specific GEF, negatively regulates myoblast differentiation through Akt signaling independently of its GEF activity in vitro. Here, we report ARHGEF3's role in skeletal muscle regeneration revealed by ARHGEF3-KO mice. These mice exhibit indiscernible phenotype under basal conditions. Upon acute injury, however, ARHGEF3 deficiency enhances the mass/fiber size and function of regenerating muscles in both young and regeneration-defective middle-aged mice. Surprisingly, these effects occur independently of Akt but via the GEF activity of ARHGEF3. Consistently, overexpression of ARHGEF3 inhibits muscle regeneration in a Rho-associated kinase-dependent manner. We further show that ARHGEF3 KO promotes muscle regeneration through activation of autophagy, a process that is also critical for maintaining muscle strength. Accordingly, ARHGEF3 depletion in old mice prevents muscle weakness by restoring autophagy. Taken together, our findings identify a link between ARHGEF3 and autophagy-related muscle pathophysiology.


Assuntos
Autofagia , Força Muscular , Músculo Esquelético/metabolismo , Regeneração , Fatores de Troca de Nucleotídeo Guanina Rho/fisiologia , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Envelhecimento/metabolismo , Animais , Diferenciação Celular , Feminino , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mioblastos/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
3.
Biotechnol Bioeng ; 115(6): 1630-1635, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29460422

RESUMO

The CRISPR/Cas9 system has been widely used for multiplex genome engineering of Saccharomyces cerevisiae. However, its application in manipulating industrial yeast strains is less successful, probably due to the genome complexity and low copy numbers of gRNA expression plasmids. Here we developed an efficient CRISPR/Cas9 system for industrial yeast strain engineering by using our previously engineered plasmids with increased copy numbers. Four genes in both a diploid strain (Ethanol Red, 8 alleles in total) and a triploid strain (ATCC 4124, 12 alleles in total) were knocked out in a single step with 100% efficiency. This system was used to construct xylose-fermenting, lactate-producing industrial yeast strains, in which ALD6, PHO13, LEU2, and URA3 were disrupted in a single step followed by the introduction of a xylose utilization pathway and a lactate biosynthetic pathway on auxotrophic marker plasmids. The optimized CRISPR/Cas9 system provides a powerful tool for the development of industrial yeast based microbial cell factories.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes/métodos , Microbiologia Industrial/métodos , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/genética , Técnicas de Inativação de Genes , Redes e Vias Metabólicas/genética , Poliploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA