Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Musculoskelet Disord ; 25(1): 180, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413962

RESUMO

PURPOSE: Previous studies have shown that DNA methyltransferase 3b (Dnmt3b) is the only Dnmt responsive to fracture repair and Dnmt3b ablation in Prx1-positive stem cells and chondrocyte cells both delayed fracture repair. Our study aims to explore the influence of Dnmt3b ablation in Gli1-positive stem cells in fracture healing mice and the underlying mechanism. METHODS: We generated Gli1-CreERT2; Dnmt3bflox/flox (Dnmt3bGli1ER) mice to operated tibia fracture. Fracture callus tissues of Dnmt3bGli1ER mice and control mice were collected and analyzed by X-ray, micro-CT, biomechanical testing, histopathology and TUNEL assay. RESULTS: The cartilaginous callus significantly decrease in ablation of Dnmt3b in Gli1-positive stem cells during fracture repair. The chondrogenic and osteogenic indicators (Sox9 and Runx2) in the fracture healing tissues in Dnmt3bGli1ER mice much less than control mice. Dnmt3bGli1ER mice led to delayed bone callus remodeling and decreased biomechanical properties of the newly formed bone during fracture repair. Both the expressions of Caspase-3 and Caspase-8 were upregulated in Dnmt3bGli1ER mice as well as the expressions of BCL-2. CONCLUSIONS: Our study provides an evidence that Dnmt3b ablation Gli1-positive stem cells can affect fracture healing and lead to poor fracture healing by regulating apoptosis to decrease chondrocyte hypertrophic maturation.


Assuntos
Calo Ósseo , Fraturas da Tíbia , Animais , Camundongos , Apoptose , Calo Ósseo/patologia , Consolidação da Fratura/fisiologia , Fraturas da Tíbia/cirurgia , Proteína GLI1 em Dedos de Zinco
2.
Biomed Pharmacother ; 158: 114122, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36566522

RESUMO

Postmenopausal osteoporosis (PMOP) is a common bone disease characterized by decreased bone density and increased bone fragility due to decreased estrogen levels. Qiangguyin (QGY) is transformed from the famous traditional Chinese medicine BuShen Invigorating Blood Decoction. In this study, we used QGY to treat PMOP. We observed that QGY significantly reduced fat accumulation in the chondro-osseous junction. However, its specific mechanism of action remains unclear. To determine the specific molecular mechanism of QGY, we explored the pharmacological mechanism by which QGY reduces fat accumulation in the chondro-osseous junction through network pharmacological analysis. The active components and targets related to PMOP and QGY were screened from different databases, forming a composition-target-disease network. Next, a comprehensive analysis platform including protein-protein interaction (PPI) network, Gene Ontology (GO) enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were established. The results revealed that QGY inhibits adipogenic differentiation by activating the mitogen-activated protein kinase (MAPK) signaling pathway, thus reducing the accumulation of fat in the chondro-osseous junction. For further verification. In vitro and in vivo experiments were carried out. Our data showed that QGY significantly reversed the high expression of fatty acid binding protein 4 (FABP4) and peroxisome proliferator-activated receptor γ (PPARγ). Further, QGY prevents fat accumulation by inhibiting the expression of p38. In summary, the results of this study suggested that QGY-induced phenotypic changes are related to the activation of the p38 MAPK signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas , Proteína Quinase 14 Ativada por Mitógeno , Camundongos , Animais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Medicina Tradicional Chinesa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA