RESUMO
Immune cells have intensely physical lifestyles characterized by structural plasticity and force exertion. To investigate whether specific immune functions require stereotyped mechanical outputs, we used super-resolution traction force microscopy to compare the immune synapses formed by cytotoxic T cells with contacts formed by other T cell subsets and by macrophages. T cell synapses were globally compressive, which was fundamentally different from the pulling and pinching associated with macrophage phagocytosis. Spectral decomposition of force exertion patterns from each cell type linked cytotoxicity to compressive strength, local protrusiveness, and the induction of complex, asymmetric topography. These features were validated as cytotoxic drivers by genetic disruption of cytoskeletal regulators, live imaging of synaptic secretion, and in silico analysis of interfacial distortion. Synapse architecture and force exertion were sensitive to target stiffness and size, suggesting that the mechanical potentiation of killing is biophysically adaptive. We conclude that cellular cytotoxicity and, by implication, other effector responses are supported by specialized patterns of efferent force.
Assuntos
Sinapses Imunológicas , Análise de Célula Única , Animais , Sinapses Imunológicas/imunologia , Camundongos , Linfócitos T Citotóxicos/imunologia , Fenômenos Biomecânicos/imunologia , Citotoxicidade Imunológica , Macrófagos/imunologia , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: A novel CT-linac (kilovolt fan-beam CT-linac) has been introduced into total marrow and lymphoid irradiation (TMLI) treatment. Its integrated kilovolt fan-beam CT (kV FBCT) can be used not only for image guidance (IGRT) but also to re-calculate the dose. PURPOSE: This study reported our clinical routine on performing TMIL treatment on the CT-linac, as well as dose distribution comparison between planned and re-calculated based on IGRT FBCT image sets. METHODS: 11 sets of data from 5 male and 6 female patients who had underwent the TMLI treatment with uRT-linac 506c were selected for this study. The planning target volumes consist of all skeletal bones exclusion of the mandible and lymphatic sanctuary sites. A planned dose of 10 Gy was prescribed to all skeletal bones exclusion of the mandible in two fractions and 12 Gy in two fractions was prescribed to lymphatic sanctuary sites. Each TMLI plan contained two sub-plans, one dynamic IMRT for the upper body and the other VMAT for the lower extremity. Two attempts were made to obtain homogeneous dose in the overlapping region, i.e., applying two plans with different isocenters for the treatment of two fractions, and using a dose gradient matching scheme. The CT scans, including planning CT and IGRT FBCT, were stitched to a whole body CT scan for dose distribution evaluation. RESULTS: The average beam-on time of Planupper is 30.6 min, ranging from 24.9 to 37.5 min, and the average beam-on time of Planlower is 6.3 min, ranging from 5.7 to 8.2 min. For the planned dose distribution, the 94.79% of the PTVbone is covered by the prescription dose of 10 Gy (V10), and the 94.68% of the PTVlymph is covered by the prescription dose of 12 Gy (V12). For the re-calculated dose distribution, the 92.17% of the PTVbone is covered by the prescription dose of 10 Gy (V10), and the 90.07% of the PTVlymph is covered by the prescription dose of 12 Gy (V12). The results showed that there is a significant difference (p < 0.05) between planning V10, V12 and delivery V10, V12. There is no significant difference (p > 0.05) between planned dose and re-calculated dose on selected organs, except for right lens (p < 0.05, Dmax). The actual delivered maximum dose of right lens is apparently larger than the planned dose of it. CONCLUSION: TMLI treatment can be performed on the CT-linac with clinical acceptable quality and high efficiency. Evaluation of the recalculated dose on IGRT FBCT suggests the treatment was delivered with adequate target coverage.
Assuntos
Radioterapia de Intensidade Modulada , Humanos , Masculino , Feminino , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Medula Óssea , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Irradiação Linfática , Tomografia Computadorizada por Raios X/métodosRESUMO
Semiconducting polymers (SPs) have shown great feasibility as candidates for near-infrared-II (NIR-II) fluorescence imaging-navigated photothermal therapy due to their strong light-harvesting ability and flexible tunability. However, the fluorescence signal of traditional SPs tends to quench in their aggregate states owing to the strong π-π stacking, which can lead to the radiative decay pathway shutting down. To address this issue, aggregation-induced emission effect has been used as a rational tactic to boost the aggregate-state fluorescence of NIR-II emitters. In this contribution, we developed a precise molecular engineering tactic based on the block copolymerizations that integrate planar and twisted segments into one conjugated polymer backbone, providing great flexibility in tuning the photophysical properties and photothermal conversion capacity of SPs. Two monomers featured with twisted and planar architectures, respectively, were tactfully incorporated via a ternary copolymerization approach to produce a series of new SPs. The optimal copolymer (SP2) synchronously shows desirable absorption ability and good NIR-II quantum yield on the premise of maintaining typical aggregation-induced emission characteristics, resulting in balanced NIR-II fluorescence brightness and photothermal property. Water-dispersible nanoparticles fabricated from the optimal SP2 show efficient photothermal therapeutic effects both in vitro and in vivo. The in vivo investigation reveals the distinguished NIR-II fluorescence imaging performance of SP2 nanoparticles and their photothermal ablation toward tumor with prominent tumor accumulation ability and excellent biocompatibility.
RESUMO
OBJECTIVE: To evaluate the impact of bone marrow (BM) irradiation dose on acute haematologic toxicity (HT) in concurrent chemoradiotherapy for cervical cancer. METHODS: Sixty-nine patients with cervical cancer treated with curative or postoperative adjuvant therapy received weekly cisplatin concurrent chemotherapy (CCT) and intensity-modulated radiation therapy (IMRT). The whole pelvic bone marrow (PBM) was delineated and divided into three subsites: ilium (IL), lower pelvis (LP), and lumbosacral spine (LS). Associations between clinical variables, dose volume of BM, including PBM, IL, LP, and LS in the form of x-Vy (volume receiving y Gy for x), and blood cell count nadir were tested using linear regression models. Receiver operating characteristic (ROC) curve analysis was further used to analyse the cutoff values of the variables with p < 0.05 in the multivariate analysis. RESULTS: In 69 patients, the haemoglobin nadir was positive correlated with baseline haemoglobin (p < 0.001), negative correlated with relative LP-V10 (p = 0.005), relative LP-V25 (p = 0.002), relative LP-V50 (p = 0.007), relative LP-mean (p = 0.003), absolute LP-V15 (p = 0.049), absolute LP-V25 (p = 0.004) and absolute LP-V30 (p = 0.009). The platelet nadir was positive correlated with baseline platelets (p = 0.048) and negative correlated with relative LP-V40 (p = 0.028), but there was no significant variable in absolute radiation volume by multivariate analysis. No variables related to the neutrophil nadir were found, and the 69 patients were divided into group A (43 cases) receiving 3-4 cycles of CCT and group B (26 cases) receiving 5-6 cycles of CCT. In group A, the relative IL-V15 (p = 0.014), the relative IL-V50 (p = 0.010) and the absolute LP-V50 (p = 0.011) were negative correlated with the neutrophil nadir. No significant variable was found in group B. No significant variables related to the lymphocyte nadir were found, and the neutrophil-to-lymphocyte ratio (NLR) was analysed. Age (p < 0.05), relative LP-V15 (p = 0.037) and absolute PBM-mean (p < 0.001) were found to be negative related to NLR. CONCLUSION: The dosimetric parameters of relative irradiated volume of BM have more statistically significant datas on acute HT than absolute irradiated volume. The nadir of haemoglobin and platelets and the vertice of NLR were more affected by the irradiation dose to LP, while neutrophils were more affected by the dose to IL. Acute HT was negative related to both low-dose irradiation (V10-30) and high-dose irradiation (V40, V50). For more than 4 cycles of CCT, the effect of BM irradiation on the neutrophils nadir was masked by chemotherapy.
Assuntos
Radioterapia de Intensidade Modulada , Neoplasias do Colo do Útero , Feminino , Humanos , Medula Óssea/efeitos da radiação , Dosagem Radioterapêutica , Neoplasias do Colo do Útero/radioterapia , Quimiorradioterapia/efeitos adversos , Radioterapia de Intensidade Modulada/efeitos adversos , HemoglobinasRESUMO
Cancer severely threatens human health and has remained the leading cause of disease-related death for decades. With the rapid advancement of nanomedicine, nanoscale metal-organic frameworks are believed to be potentially applied in the treatment and biomedical imaging for various tumors. Zeolite imidazole framework (ZIF)-8 attracts increasing attention due to its high porosity, large specific surface area, and pH-responsiveness. The designs and modifications of ZIF-8 nanoparticles, as well as the strategy of drug loading, demand a multifaceted and comprehensive understanding of nanomaterial features and tumor characteristics. We searched for studies on ZIF-8-based nanoplatforms in tumor theranostics on Web of Science from 2015 to 2022, mainly focused on the research published in the past 3 years, summarized the progress of their applications in tumor imaging and treatment, and discussed the favorable aspects of ZIF-8 nanoparticles for tumor theranostics as well as the future opportunities and potential challenges. As a kind of metal-organic framework material full of potential, ZIF-8 can be expected to be combined with more therapeutic systems in the future and continue to contribute to all aspects of tumor therapy and diagnosis.
RESUMO
Single-atom nanozyme (SAzyme) systems have shown great potential in tumor therapy. A multifunctional SAzyme not only possesses high catalytic activity but also can be used as photothermal agents in photothermal therapy (PTT). Furthermore, it is also imperative to overcome tumor thermal resistance in SAzyme-based PTT so that PTT under a mild temperature is achievable. Herein, a novel platelet membrane (PM)-coated mesoporous Fe single-atom nanozyme (Fe-SAzyme) was formulated to solve these issues. The PM-coated mesoporous Fe-SAzyme (PMS) showed a satisfactory NIR-II photothermal performance, high peroxidase (POD) activity, and good tumor-targeting ability. In addition, PMS may be used as a carrier for protein drugs owing to its inner mesoporous structure. In vitro experiments showed that PMS could inhibit the expression of heat shock protein (HSP) by damaging the mitochondria, thereby finally improving the effect of mild-temperature PTT. Moreover, in vivo results showed that PMS could efficiently accumulate in tumor sites and suppress tumor growth with minimal toxicity in major organs. To the best of our knowledge, this study is the first report of a biomimetic mesoporous Fe-SAzyme used to achieve mitochondrial damage-mediated mild-temperature PTT. The study provides new promising ideas for designing other SAzyme systems for cancer treatment.
Assuntos
Nanopartículas , Neoplasias , Catálise , Linhagem Celular Tumoral , Humanos , Neoplasias/tratamento farmacológico , Peroxidase , Fototerapia , Terapia Fototérmica , TemperaturaRESUMO
Continuous high doses of radiation can cause irreversible side effects and radiation resistance; thus, advanced radiosensitizers are urgently needed. To overcome this problem, we developed a nano platelet radiosensitization system (PCA) by coating the chemotherapeutic drug cisplatin (CDDP) loaded gold nanocages (AuNs) within the platelet membrane. The developed PCA system may enable AuNs to have immune escape and targeting capabilities. After administration, PCA will actively target tumor cells and avoid being cleared by the immune system. Subsequently, CDDP, which destroys tumor cell DNA, can not only kill tumor cells directly but also combine with AuNs, which deposit radiation energy into tumor tissues, reducing RT resistance. In vivo and in vitro studies revealed that the combination of PCA with RT (2Gy) efficiently inhibits tumor proliferation without causing side effects such as inflammation. To conclude, this is the first attempt to use platelet membranes to correctly transport AuNs while also accomplishing low-dose RT, which could help AuNs-based tumor RT become more effective.
RESUMO
Higher doses of radiotherapy (RT) are associated with resistance induction, therefore highly selective and controllable radiosensitizers are urgently needed. To address this issue, we developed a FeGA-based injectable hydrogel system (FH) that can be used in combination with low-dose radiation. Our FH can deliver FeGA directly to the tumor site via intratumoral injection, where it is a reservoir-based system to conserve FeGA. The photothermal properties of FeGA steadily dissolve FH under laser irradiation, and, simultaneously, FeGA reacts with a large amount of H2O2 in the cell to produce OH (Fenton reaction) which is highly toxic to mitochondria, rendering the cell inactive and reducing radiotherapy resistance. In vivo and in vitro studies suggest that combining the FH and NIR irradiation with RT (2Gy) can significantly reduce tumor proliferation without side effects such as inflammation. To conclude, this is the first study to achieve combined chemodynamic therapy (CDT) and photothermal therapy (PTT) in situ treatment, and the best therapeutic effect can be obtained with a low-dose radiation combination, thus expanding the prospects of FeGA-based tumor therapy.
RESUMO
Radiotherapy is recommended as a modality for cancer treatment in clinic. However, cancerous cells were resistant to therapeutic irradiation due to its DNA repair. In this work, single-walled carbon nanotubes with unique physical properties of hollow structures and high specific surface area were introduced as carrier for iron-palladium (FePd) to obtain iron-palladium decorated carbon nanotubes (FePd@CNTs). On one hand, FePd nanoparticles possess significant ability in radiosensitization as previously reported. On the other hand, carbon nanotubes offer higher efficiency in crossing biological barriers, inducing the accumulation and retention of FePd nanoparticles within tumor tissue. In order to verify the radiosensitization effect of FePd@CNTs, both in vitro and in vivo experiments were conducted. These experiments showed that the FePd@CNTs exhibited remarkably better radiosensitization effect and more obvious accumulation than FePd NPs, suggesting a potential of FePd@CNTs in radiosensitization.
RESUMO
Rational: Interstitial brachytherapy (BT) is a promising radiation therapy for cancer; however, the efficacy of BT is limited by tumor radioresistance. Recent advances in materials science and nanotechnology have offered many new opportunities for BT. Methods: In this work, we developed a biomimetic nanotheranostic platform for enhanced BT. Core-shell Au@AuPd nanospheres (CANS) were synthesized and then encapsulated in platelet (PLT)-derived plasma membranes. Results: The resulting PLT/CANS nanoparticles efficiently evaded immune clearance and specifically accumulated in tumor tissues due to the targeting capabilities of the PLT membrane coating. Under endoscopic guidance, a BT needle was manipulated to deliver appropriate radiation doses to orthotopic colon tumors while sparing surrounding organs. Accumulated PLT/CANS enhanced the irradiation dose deposition in tumor tissue while alleviating tumor hypoxia by catalyzing endogenous H2O2 to produce O2. After treatment with PLT/CANS and BT, 100% of mice survived for 30 days. Conclusions: Our work presents a safe, robust, and efficient strategy for enhancing BT outcomes when adapted to treatment of intracavitary and unresectable tumors.
Assuntos
Materiais Biomiméticos/farmacologia , Plaquetas , Braquiterapia , Ouro/farmacologia , Nanopartículas Metálicas/uso terapêutico , Neoplasias Experimentais/radioterapia , Paládio/farmacologia , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Células RAW 264.7Assuntos
Infecções por Coronavirus/radioterapia , Neoplasias/radioterapia , Pandemias , Pneumonia Viral/radioterapia , Betacoronavirus/patogenicidade , COVID-19 , China/epidemiologia , Infecções por Coronavirus/complicações , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Surtos de Doenças , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/complicações , Neoplasias/epidemiologia , Neoplasias/virologia , Pneumonia Viral/complicações , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , SARS-CoV-2 , Resultado do TratamentoRESUMO
Nanoenzymes perceive the properties of enzyme-like catalytic activity, thereby offering significant cancer therapy potential. In this study, Fe3 O4 @MnO2 , a magnetic field (MF) targeting nanoenzyme with a core-shell structure, is synthesized and applied to radiation enhancement with using glucose oxidase (GOX) for combination therapy. The glucose is oxidized by the GOX to produce excess H2 O2 in an acidic extracellular microenvironment, following which the MnO2 shell reacts with H2 O2 to generate O2 and overcome hypoxia. Concurrently, intracellular glutathione (GSH)-which limits the effects of radiotherapy (RT)-can be oxidized by the MnO2 shell while the latter is reduced to Mn2+ for T1 -weighed MRI. The core Fe3 O4 , with its good magnetic targeting ability, can be utilized for T2 -weighed MRI. In summary, the work demonstrates that Fe3 O4 @MnO2 , as a dual T1 - and T2 -weighed MRI contrast agent with strong biocompatibility, exhibits striking potential for radiation enhancement under magnetic targeting.
Assuntos
Glucose Oxidase , Compostos de Manganês , Glutationa , Humanos , Hipóxia , ÓxidosRESUMO
BACKGROUND & PURPOSE: Helical tomotherapy has been applied to total marrow irradiation (HT-TMI). Our objective was to apply failure mode and effects analysis (FMEA) two times separated by 1 year to evaluate and improve the safety of HT-TMI. MATERIALS AND METHODS: A multidisciplinary team was created. FMEA consists of 4 main steps: (1) Creation of a process map; (2) Identification of all potential failure mode (FM) in the process; (3) Evaluation of the occurrence (O), detectability (D) and severity of impact (S) of each FM according to a scoring criteria (1-10), with the subsequent calculation of the risk priority number (RPN=O*D*S) and (4) Identification of the feasible and effective quality control (QC) methods for the highest risks. A second FMEA was performed for the high-risk FMs based on the same risk analysis team in 1 year later. RESULTS: A total of 39 subprocesses and 122 FMs were derived. First time RPN ranged from 3 to 264.3. Twenty-five FMs were defined as being high-risk, with the top 5 FMs (first RPN/ second RPN): (1) treatment couch movement failure (264.3/102.8); (2) section plan dose junction error in delivery (236.7/110.4); (3) setup check by megavoltage computed tomography (MVCT) failure (216.8/94.6); (4) patient immobilization error (212.5/90.2) and (5) treatment interruption (204.8/134.2). A total of 20 staff members participated in the study. The second RPN value of the top 5 high-risk FMs were all decreased. CONCLUSION: QC interventions were implemented based on the FMEA results. HT-TMI specific treatment couch tests; the arms immobilization methods and strategy of section plan dose junction in delivery were proved to be effective in the improvement of the safety.
Assuntos
Medula Óssea/efeitos da radiação , Análise do Modo e do Efeito de Falhas na Assistência à Saúde/métodos , Neoplasias/radioterapia , Lesões por Radiação/prevenção & controle , Erros de Configuração em Radioterapia/prevenção & controle , Radioterapia de Intensidade Modulada/métodos , Humanos , Controle de Qualidade , Dosagem Radioterapêutica , Medição de Risco , Gestão de RiscosRESUMO
BACKGROUND: To quantify the dosimetric parameters of different bone marrow sparing strategies and to determine the optimal strategy for cervical cancer patients undergoing postoperative intensity-modulated radiotherapy (IMRT). METHODS: Fifteen patients with cervical cancer were selected for analysis. The planning target volume (PTV) and the organs at risks (OAR) including small bowel, bladder, rectum, femoral heads, os coxae (OC), lumbosacral spine (LS) and bone marrow (BM) were contoured. For each patient, four IMRT plans with different strategies were generated, including one plan without BM as the dose-volume constraint, namely IMRT (N) plan, and three bone marrow sparing (BMS-IMRT) plans. The three BMS-IMRT plans used the BM, OC, OC and LS respectively, as the BM OAR, namely as IMRT (BM), IMRT (OC) and IMRT (OC + LS) plans. Dose volumes for the target and the OARs were compared using analysis of variance (ANOVA). RESULTS: Compared with IMRT (N) plans, the dose to the small bowel, bladder, rectum and femoral heads showed no increase in the three BMS-IMRT plans. However, the irradiated dose to BM, OC and LS significantly decreased. In particular, the mean dose of BM, OC and LS decreased by about 5Gy (p < 0.05) in IMRT (BM) plans while the average volume receiving ≥20, ≥30, ≥40Gy decreased by 7.1-24.2%. The LS volume receiving 40Gy showed the highest decrease (about 31.2%, p < 0.05) in IMRT (OC + LS) plans. On the other hand, in comparison with IMRT (BM), IMRT (OC) reduced the dose volume of to the OC, but increased the dose to LS while IMRT (OC + LS) plans reduced both the OC and the LS volume at all dose levels. Specifically, the V20 of OC and LS in the IMRT (OC + LS) plan decreased by 11.5 and 11.2%, respectively. CONCLUSION: By introducing the os coxae and lumbosacral spine as the dose-volume constraints, the IMRT plans exhibited the best sparing of the bone marrow without compromising the dose to surrounding normal structures. Therefore, we recommend adding the os coxae and lumbosacral spine as the BM OAR in such plans.
Assuntos
Medula Óssea/efeitos da radiação , Tratamentos com Preservação do Órgão/métodos , Órgãos em Risco/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/normas , Neoplasias do Colo do Útero/radioterapia , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Prognóstico , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Neoplasias do Colo do Útero/patologiaRESUMO
Cellular differentiation requires both activation of target cell transcriptional programs and repression of non-target cell programs. The Myt1 family of zinc finger transcription factors contributes to fibroblast to neuron reprogramming in vitro. Here, we show that ztf-11 (Zinc-finger Transcription Factor-11), the sole Caenorhabditis elegans Myt1 homolog, is required for neurogenesis in multiple neuronal lineages from previously differentiated epithelial cells, including a neuron generated by a developmental epithelial-to-neuronal transdifferentiation event. ztf-11 is exclusively expressed in all neuronal precursors with remarkable specificity at single-cell resolution. Loss of ztf-11 leads to upregulation of non-neuronal genes and reduced neurogenesis. Ectopic expression of ztf-11 in epidermal lineages is sufficient to produce additional neurons. ZTF-11 functions together with the MuvB corepressor complex to suppress the activation of non-neuronal genes in neurons. These results dovetail with the ability of Myt1l (Myt1-like) to drive neuronal transdifferentiation in vitro in vertebrate systems. Together, we identified an evolutionarily conserved mechanism to specify neuronal cell fate by repressing non-neuronal genes.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Diferenciação Celular , Células Epiteliais/fisiologia , Regulação da Expressão Gênica , Neurônios/fisiologia , Transativadores/metabolismo , Animais , Fatores de TranscriçãoRESUMO
The sensory nervous system of C. elegans comprises cells with varied molecular and functional characteristics, and is, therefore, a powerful model for understanding mechanisms that generate neuronal diversity. We report here that VAB-3, a C. elegans homolog of the homeodomain-containing protein Pax6, has opposing functions in regulating expression of a specific chemosensory fate. A homeodomain-only short isoform of VAB-3 is expressed in BAG chemosensory neurons, where it promotes gene expression and cell function. In other cells, a long isoform of VAB-3, comprising a Paired homology domain and a homeodomain, represses expression of ETS-5, a transcription factor required for expression of BAG fate. Repression of ets-5 requires the Eyes Absent homolog EYA-1 and the Six-class homeodomain protein CEH-32. We determined sequences that mediate high-affinity binding of ETS-5, VAB-3 and CEH-32. The ets-5 locus is enriched for ETS-5-binding sites but lacks sequences that bind VAB-3 and CEH-32, suggesting that these factors do not directly repress ets-5 expression. We propose that a promoter-selection system together with lineage-specific expression of accessory factors allows VAB-3/Pax6 to either promote or repress expression of specific cell fates in a context-dependent manner. This article has an associated 'The people behind the papers' interview.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/metabolismo , Bleomicina/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Clorambucila/metabolismo , Cisplatino/metabolismo , Ciclofosfamida/metabolismo , Dactinomicina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Fatores de Transcrição/genética , Vimblastina/metabolismoRESUMO
BACKGROUND: To report our experience in planning and delivering total marrow irradiation (TMI) and total marrow and lymphatic irradiation (TMLI) in patients with hematologic malignancies. METHODS: Twenty-seven patients undergoing bone marrow transplantation were treated with TMI/TMLI using Helical Tomotherapy (HT). All skeletal bones exclusion of the mandible comprised the treatment target volume and, for TMLI, lymph node chains, liver, spleen and/or brain were also included according to the clinical indication. Planned dose of 8Gy in 2 fractions was delivered over 1 day for TMI while 10Gy in 2 fractions BID was used for TMLI. Organs at risk (OAR) contoured included the brain, brainstem, lens, eyes, optic nerves, parotids, oral cavity, lungs, heart, liver, kidneys, stomach, small bowel, bladder and rectum. In particular, a simple method to avoid hot or cold doses in the overlapping region was implemented and the plan sum was adopted to evaluate dose inhomogeneity. Furthermore, setup errors from 54 treatments were summarized to gauge the effectiveness of immobilization. RESULTS: During the TMI/TMLI treatment, no acute adverse effects occurred during the radiation treatment. Two patients suffered nausea or vomiting right after radiation course. For the 9 patients treated with TMI, the median dose reduction of major organs varied 30-65% of the prescribed dose, substantially lower than the traditional total body irradiation (TBI). Meanwhile, average biological equivalent doses to OARs with 8Gy/2F TMI approach were not different from the conventional 12Gy/6F TMI approach. In the dose junction region, the 93% of PTV was covered by the prescribed dose without obvious hotspots. For the 27 patients, the overall setup corrections were lower than 3 mm except those in the SI direction for abdomen-pelvis region, demonstrating excellent immobilization. CONCLUSION: The present study confirmed the technical feasibility of HT-based TMI/TMLI delivering 8-10Gy in 2 fractions over 1 day. For patients undergoing hematopoietic cell transplantation the proposed 8Gy/2F TMI (or 10Gy/2F TMLI) strategy may be a novel approach to improve delivery efficiency, increase effective radiation dose to target while maintaining low risk of severe organ toxicities.
Assuntos
Medula Óssea/efeitos da radiação , Neoplasias Hematológicas/radioterapia , Sistema Linfático/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Adolescente , Adulto , Criança , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Órgãos em Risco/efeitos da radiação , Prognóstico , Dosagem Radioterapêutica , Estudos Retrospectivos , Adulto JovemRESUMO
Dual-view inverted selective plane illumination microscopy (diSPIM) enables high-speed, long-term, four-dimensional (4D) imaging with isotropic spatial resolution. It is also compatible with conventional sample mounting on glass coverslips. However, broadening of the light sheet at distances far from the beam waist and sample-induced scattering degrades diSPIM contrast and optical sectioning. We describe two simple improvements that address both issues and entail no additional hardware modifications to the base diSPIM. First, we demonstrate improved diSPIM sectioning by keeping the light sheet and detection optics stationary, and scanning the sample through the stationary light sheet (rather than scanning the broadening light sheet and detection plane through the stationary sample, as in conventional diSPIM). This stage-scanning approach allows a thinner sheet to be used when imaging laterally extended samples, such as fixed microtubules or motile mitochondria in cell monolayers, and produces finer contrast than does conventional diSPIM. We also used stage-scanning diSPIM to obtain high-quality, 4D nuclear datasets derived from an uncompressed nematode embryo, and performed lineaging analysis to track 97% of cells until twitching. Second, we describe the improvement of contrast in thick, scattering specimens by synchronizing light-sheet synthesis with the rolling, electronic shutter of our scientific complementary metal-oxide-semiconductor (sCMOS) detector. This maneuver forms a virtual confocal slit in the detection path, partially removing out-of-focus light. We demonstrate the applicability of our combined stage- and slit-scanning- methods by imaging pollen grains and nuclear and neuronal structures in live nematode embryos. All acquisition and analysis code is freely available online.
Assuntos
Microscopia/instrumentação , Microscopia/métodos , Animais , Antígenos de Plantas/ultraestrutura , Caenorhabditis elegans/embriologia , Linhagem Celular Tumoral , Rastreamento de Células/métodos , Humanos , Imageamento Tridimensional/métodos , Microtúbulos/ultraestrutura , Mitocôndrias/fisiologia , Mitocôndrias/ultraestrutura , Extratos VegetaisRESUMO
Nanomaterials have an advantage in "personalized" therapy, which is the ultimate goal of tumor treatment. In order to investigate the potential ability of FePt nanoparticles (NPs) in the diagnosis and chemoradiotherapy treatment of malignant tumors, superparamagnetic, monodispersed FePt (~3 nm) alloy NPs were synthesized, using cysteamine as a capping agent. The NPs were characterized by means of X-ray diffraction; transmission electron microscopy, Physical Property Measurement System, and Fourier transform infrared spectroscopy. The cytotoxicity of FePt NPs on Vero cells was assessed using an MTT assay, and tumor cell proliferation inhibited by individual FePt NPs and FePt NPs combined with X-ray beams were also collected using MTT assays; HeLa human cancer cell lines were used as in vitro models. Further confirmation of the combined effect of FePt NPs and X-rays was verified using HeLa cells, after which, the cellular uptake of FePt NPs was captured by transmission electron microscopy. The results indicated that the growth of HeLa cells was significantly inhibited by FePt NPs in a concentration-dependent manner, and the growth was significantly more inhibited by FePt NPs combined with a series of X-ray beam doses; the individual NPs did not display any remarkable cytotoxicity on Vero cells at a concentration <250 µg/mL. Meanwhile, the FePt NPs showed negative/positive contrast enhancement for MRI/CT molecule imaging at the end of the study. Therefore, the combined results implied that FePt NPs might potentially serve as a promising nanoprobe for the integration of tumor diagnosis and chemoradiotherapy.