Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 4(8): 101156, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586324

RESUMO

We describe a general approach to produce bone and cartilaginous structures utilizing the self-regenerative capacity of the intercostal rib space to treat a deformed metacarpophalangeal joint and microtia. Anatomically precise 3D molds were positioned on the perichondro-periosteal or perichondral flap of the intercostal rib without any other exogenous elements. We find anatomically precise metacarpal head and auricle constructs within the implanted molds after 6 months. The regenerated metacarpal head was used successfully to surgically repair the deformed metacarpophalangeal joint. Auricle reconstructive surgery in five unilateral microtia patients yielded good aesthetic and functional results. Long-term follow-up revealed the auricle constructs were safe and stable. Single-cell RNA sequencing analysis reveal early infiltration of a cell population consistent with mesenchymal stem cells, followed by IL-8-stimulated differentiation into chondrocytes. Our results demonstrate the repair and regeneration of tissues using only endogenous factors and a viable treatment strategy for bone and tissue structural defects.


Assuntos
Microtia Congênita , Células-Tronco Mesenquimais , Humanos , Cartilagem da Orelha/cirurgia , Engenharia Tecidual/métodos , Microtia Congênita/terapia , Condrócitos
2.
Anesth Analg ; 127(3): 650-660, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29958221

RESUMO

BACKGROUND: Cardiotoxic effects of local anesthetics (LAs) involve inhibition of NaV1.5 voltage-gated Na channels. Metastatic breast and colon cancer cells also express NaV1.5, predominantly the neonatal splice variant (nNaV1.5) and their inhibition by LAs reduces invasion and migration. It may be advantageous to target cancer cells while sparing cardiac function through selective blockade of nNaV1.5 and/or by preferentially affecting inactivated NaV1.5, which predominate in cancer cells. We tested the hypotheses that lidocaine and levobupivacaine differentially affect (1) adult (aNaV1.5) and nNaV1.5 and (2) the resting and inactivated states of NaV1.5. METHODS: The whole-cell voltage-clamp technique was used to evaluate the actions of lidocaine and levobupivacaine on recombinant NaV1.5 channels expressed in HEK-293 cells. Cells were transiently transfected with cDNAs encoding either aNaV1.5 or nNaV1.5. Voltage protocols were applied to determine depolarizing potentials that either activated or inactivated 50% of maximum conductance (V½ activation and V½ inactivation, respectively). RESULTS: Lidocaine and levobupivacaine potently inhibited aNaV1.5 (IC50 mean [SD]: 20 [22] and 1 [0.6] µM, respectively) and nNaV1.5 (IC50 mean [SD]: 17 [10] and 3 [1.6] µM, respectively) at a holding potential of -80 mV. IC50s differed significantly between lidocaine and levobupivacaine with no influence of splice variant. Levobupivacaine induced a statistically significant depolarizing shift in the V½ activation for aNaV1.5 (mean [SD] from -32 [4.6] mV to -26 [8.1] mV) but had no effect on the voltage dependence of activation of nNaV1.5. Lidocaine had no effect on V½ activation of either variant but caused a significantly greater depression of maximum current mediated by nNaV1.5 compared to aNaV1.5. Similar statistically significant shifts in the V½ inactivation (approximately -10 mV) occurred for both LAs and NaV1.5 variants. Levobupivacaine (1 µM) caused a significantly greater slowing of recovery from inactivation of both variants than did lidocaine (10 µM). Both LAs caused approximately 50% tonic inhibition of aNaV1.5 or nNaV1.5 when holding at -80 mV. Neither LA caused tonic block at a holding potential of either -90 or -120 mV, voltages at which there was little steady-state inactivation. Higher concentrations of either lidocaine (300 µM) or levobupivacaine (100 µM) caused significantly more tonic block at -120 mV. CONCLUSIONS: These data demonstrate that low concentrations of the LAs exhibit inactivation-dependent block of NaV1.5, which may provide a rationale for their use to safely inhibit migration and invasion by metastatic cancer cells without cardiotoxicity.


Assuntos
Anestésicos Locais/farmacologia , Levobupivacaína/farmacologia , Lidocaína/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.5/fisiologia , Bloqueadores dos Canais de Sódio/farmacologia , Adulto , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Recém-Nascido , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia
3.
Anesthesiology ; 127(5): 878-889, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28820778

RESUMO

BACKGROUND: Prolonged opioid administration leads to tolerance characterized by reduced analgesic potency. Pain management is additionally compromised by the hedonic effects of opioids, the cause of their misuse. The multifunctional protein ß-arrestin2 regulates the hedonic effects of morphine and participates in tolerance. These actions might reflect µ opioid receptor up-regulation through reduced endocytosis. ß-Arrestin2 also recruits kinases to µ receptors. We explored the role of Src kinase in morphine analgesic tolerance, locomotor stimulation, and reinforcement in C57BL/6 mice. METHODS: Analgesic (tail withdrawal latency; percentage of maximum possible effect, n = 8 to 16), locomotor (distance traveled, n = 7 to 8), and reinforcing (conditioned place preference, n = 7 to 8) effects of morphine were compared in wild-type, µ, µ, and ß-arrestin2 mice. The influence of c-Src inhibitors dasatinib (n = 8) and PP2 (n = 12) was examined. RESULTS: Analgesia in morphine-treated wild-type mice exhibited tolerance, declining by day 10 to a median of 62% maximum possible effect (interquartile range, 29 to 92%). Tolerance was absent from mice receiving dasatinib. Tolerance was enhanced in µ mice (34% maximum possible effect; interquartile range, 5 to 52% on day 5); dasatinib attenuated tolerance (100% maximum possible effect; interquartile range, 68 to 100%), as did PP2 (91% maximum possible effect; interquartile range, 78 to 100%). By contrast, c-Src inhibition affected neither morphine-evoked locomotor stimulation nor reinforcement. Remarkably, dasatinib not only attenuated tolerance but also reversed established tolerance in µ mice. CONCLUSIONS: The ability of c-Src inhibitors to inhibit tolerance, thereby restoring analgesia, without altering the hedonic effect of morphine, makes c-Src inhibitors promising candidates as adjuncts to opioid analgesics.


Assuntos
Tolerância a Medicamentos/fisiologia , Morfina/farmacologia , Desempenho Psicomotor/fisiologia , Reforço Psicológico , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibidores de Proteínas Quinases/farmacologia , Desempenho Psicomotor/efeitos dos fármacos
4.
J Physiol ; 595(5): 1725-1741, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27981574

RESUMO

KEY POINTS: The functional importance of residues in loop G of the GABAA receptor has not been investigated. D43 and T47 in the α1 subunit are of particular significance as their structural modification inhibits activation by GABA. While the T47C substitution had no significant effect, non-conservative substitution of either residue (D43C or T47R) reduced the apparent potency of GABA. Propofol potentiated maximal GABA-evoked currents mediated by α1(D43C)ß2γ2 and α1(T47R)ß2γ2 receptors. Non-stationary variance analysis revealed a reduction in maximal GABA-evoked Popen , suggesting impaired agonist efficacy. Further analysis of α1(T47R)ß2γ2 receptors revealed that the efficacy of the partial agonist THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridine-3-ol) relative to GABA was impaired. GABA-, THIP- and propofol-evoked currents mediated by α1(T47R)ß2γ2 receptors deactivated faster than those mediated by α1ß2γ2 receptors, indicating that the mutation impairs agonist-evoked gating. Spontaneous gating caused by the ß2(L285R) mutation was also reduced in α1(T47R)ß2(L285R)γ2 compared to α1ß2(L285R)γ2 receptors, confirming that α1(T47R) impairs gating independently of agonist activation. ABSTRACT: The modification of cysteine residues (substituted for D43 and T47) by 2-aminoethyl methanethiosulfonate in the GABAA α1 subunit loop G is known to impair activation of α1ß2γ2 receptors by GABA and propofol. While the T47C substitution had no significant effect, non-conservative substitution of either residue (D43C or T47R) reduced the apparent potency of GABA. Propofol (1 µm), which potentiates sub-maximal but not maximal GABA-evoked currents mediated by α1ß2γ2 receptors, also potentiated maximal currents mediated by α1(D43C)ß2γ2 and α1(T47R)ß2γ2 receptors. Furthermore, the peak open probabilities of α1(D43C)ß2γ2 and α1(T47R)ß2γ2 receptors were reduced. The kinetics of macroscopic currents mediated by α1(D43C)ß2γ2 and α1(T47R)ß2γ2 receptors were characterised by slower desensitisation and faster deactivation. Similar changes in macroscopic current kinetics, together with a slower activation rate, were observed with the loop D α1(F64C) substitution, known to impair both efficacy and agonist binding, and when the partial agonist THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridine-3-ol) was used to activate WT or α1(T47R)ß2γ2 receptors. Propofol-evoked currents mediated by α1(T47R)ß2γ2 and α1(F64C)ß2γ2 receptors also exhibited faster deactivation than their WT counterparts, revealing that these substitutions impair gating through a mechanism independent of orthosteric binding. Spontaneous gating caused by the introduction of the ß2(L285R) mutation was also reduced in α1(T47R)ß2(L285R)γ2 compared to α1ß2(L285R)γ2 receptors, confirming that α1(T47R) impairs gating independently of activation by any agonist. These findings implicate movement of the GABAA receptor α1 subunit's ß1 strand during agonist-dependent and spontaneous gating. Immobilisation of the ß1 strand may provide a mechanism for the inhibition of gating by inverse agonists such as bicuculline.


Assuntos
Subunidades Proteicas/fisiologia , Receptores de GABA-A/fisiologia , Substituição de Aminoácidos , Animais , GABAérgicos/farmacologia , Células HEK293 , Humanos , Ativação do Canal Iônico/fisiologia , Camundongos , Mutagênese , Propofol/farmacologia , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Receptores de GABA-A/química , Receptores de GABA-A/genética , Ácido gama-Aminobutírico/farmacologia
5.
Sci Rep ; 5: 11541, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-26096612

RESUMO

Functional expression of voltage-gated Na(+) channels (VGSCs) has been demonstrated in multiple cancer cell types where channel activity induces invasive activity. The signaling mechanisms by which VGSCs promote oncogenesis remain poorly understood. We explored the signal transduction process critical to VGSC-mediated invasion on the basis of reports linking channel activity to gene expression changes in excitable cells. Coincidentally, many genes transcriptionally regulated by the SCN5A isoform in colon cancer have an over-representation of cis-acting sites for transcription factors phosphorylated by ERK1/2 MAPK. We hypothesized that VGSC activity promotes MAPK activation to induce transcriptional changes in invasion-related genes. Using pharmacological inhibitors/activators and siRNA-mediated gene knockdowns, we correlated channel activity with Rap1-dependent persistent MAPK activation in the SW620 human colon cancer cell line. We further demonstrated that VGSC activity induces downstream changes in invasion-related gene expression via a PKA/ERK/c-JUN/ELK-1/ETS-1 transcriptional pathway. This is the first study illustrating a molecular mechanism linking functional activity of VGSCs to transcriptional activation of invasion-related genes.


Assuntos
Neoplasias do Colo/genética , Sistema de Sinalização das MAP Quinases/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Invasividade Neoplásica/genética , Transcrição Gênica/genética , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Transporte de Íons/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Complexo Shelterina , Proteínas de Ligação a Telômeros/metabolismo , Veratridina/farmacologia
6.
Br J Pharmacol ; 172(16): 4066-77, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25989383

RESUMO

BACKGROUND AND PURPOSE: The 5-HT3 receptor is a member of the pentameric ligand-gated ion channel family and is pharmacologically targeted to treat irritable bowel syndrome and nausea/emesis. Furthermore, many antidepressants elevate extracellular concentrations of 5-HT. This study investigates the functional consequences of exposure of recombinant 5-HT3 A receptors to agonists and antagonists. EXPERIMENTAL APPROACH: We used HEK cells stably expressing recombinant 5-HT3 A receptors and the ND7/23 (mouse neuroblastoma/dorsal root ganglion hybrid) cell line, which expresses endogenous 5-HT3 receptors. Surface expression of recombinant 5-HT3 A receptors, modified to contain the bungarotoxin (BTX) binding sequence, was quantified using fluorescence microscopy to image BTX-conjugated fluorophores. Whole cell voltage-clamp electrophysiology was used to measure the density of current mediated by 5-HT3 A receptors. KEY RESULTS: 5-HT3 A receptors were up-regulated by the prolonged presence of agonists (5-HT and m-chlorophenylbiguanide) and antagonists (MDL-72222 and morphine). The up-regulation of 5-HT3 A receptors by 5-HT and MDL-72222 was time- and concentration-dependent but was independent of newly translated receptors. The phenomenon was observed for recombinant rodent and human 5-HT3 A receptors and for endogenous 5-HT3 receptors in neuronal ND7/23 cells. CONCLUSIONS AND IMPLICATIONS: Up-regulation of 5-HT3 A receptors, following exposure to either agonists or antagonists suggests that this phenomenon may occur in response to different therapeutic agents. Medications that elevate 5-HT levels, such as the antidepressant inhibitors of 5-HT reuptake and antiemetic inhibitors of 5-HT3 receptor function, may both raise receptor expression. However, this will require further investigation in vivo.


Assuntos
Receptores 5-HT3 de Serotonina/fisiologia , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Animais , Biguanidas/farmacologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Morfina/farmacologia , Ratos , Serotonina/farmacologia , Tropanos/farmacologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA