Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Drug Dev Res ; 85(5): e22232, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38992915

RESUMO

The human aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, plays a pivotal role in a diverse array of pathways in biological and pathophysiological events. This position AhR as a promising target for both carcinogenesis and antitumor strategies. In this study we utilized computational modeling to screen and identify FDA-approved drugs binding to the allosteric site between α2 of bHLH and PAS-A domains of AhR, with the aim of inhibiting its canonical pathway activity. Our findings indicated that nilotinib effectively fits into the allosteric pocket and forms interactions with crucial residues F82, Y76, and Y137. Binding free energy value of nilotinib is the lowest among top hits and maintains stable within its pocket throughout entire (MD) simulations time. Nilotinib has also substantial interactions with F295 and Q383 when it binds to orthosteric site and activate AhR. Surprisingly, it does not influence AhR nuclear translocation in the presence of AhR agonists; instead, it hinders the formation of the functional AhR-ARNT-DNA heterodimer assembly, preventing the upregulation of regulated enzymes like CYP1A1. Importantly, nilotinib exhibits a dual impact on AhR, modulating AhR activity via the PAS-B domain and working as a noncompetitive allosteric antagonist capable of blocking the canonical AhR signaling pathway in the presence of potent AhR agonists. These findings open a new avenue for the repositioning of nilotinib beyond its current application in diverse diseases mediated via AhR.


Assuntos
Sítio Alostérico , Receptores de Hidrocarboneto Arílico , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Receptores de Hidrocarboneto Arílico/química , Humanos , Regulação Alostérica/efeitos dos fármacos , Pirimidinas/farmacologia , Pirimidinas/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Simulação de Dinâmica Molecular , Aprovação de Drogas , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/antagonistas & inibidores
2.
Arch Biochem Biophys ; 759: 110088, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992456

RESUMO

Ponatinib and tofacitinib, established kinase inhibitors and FDA-approved for chronic myeloid leukemia and rheumatoid arthritis, are recently undergoing investigation in diverse clinical trials for potential repurposing. The aryl hydrocarbon receptor (AhR), a transcription factor influencing a spectrum of physiological and pathophysiological activities, stands as a therapeutic target for numerous diseases. This study employs molecular modelling tools and in vitro assays to identify ponatinib and tofacitinib as AhR ligands, elucidating their binding and molecular interactions in the AhR PAS-B domain. Molecular docking analyses revealed that ponatinib and tofacitinib occupy the central pocket within the primary cavity, similar to AhR agonists 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and (benzo[a]pyrene) B[a]P. Our simulations also showed that these compounds exhibit good stability, stabilizing many hot spots within the PAS-B domain, including the Dα-Eα loop, which serves as a regulatory element for the binding pocket. Binding energy calculations highlighted ponatinib's superior predicted affinity, revealing F295 as a crucial residue in maintaining strong interaction with the two compounds. Our in vitro data suggest that ponatinib functions as an AhR antagonist, blocking the downstream signaling of AhR pathway induced by TCDD and B[a]P. Additionally, both tofacitinib and ponatinib cause impairment in AhR-regulated CYP1A1 enzyme activity induced by potent AhR agonists. This study unveils ponatinib and tofacitinib as potential modulators of AhR, providing valuable insights into their therapeutic roles in AhR-associated diseases and enhancing our understanding of the intricate relationship between kinase inhibitors and AhR.

3.
Eur J Med Res ; 29(1): 353, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956700

RESUMO

Breast cancer (BC) has a high mortality rate and is one of the most common malignancies in the world. Initially, BC was considered non-immunogenic, but a paradigm shift occurred with the discovery of tumor-infiltrating lymphocytes (TILs) and regulatory T cells (Tregs) in the BC tumor microenvironment. CTLA-4 (Cytotoxic T-lymphocyte-associated protein 4) immunotherapy has emerged as a treatment option for BC, but it has limitations, including suboptimal antitumor effects and toxicity. Research has demonstrated that anti-CTLA-4 combination therapies, such as Treg depletion, cancer vaccines, and modulation of the gut microbiome, are significantly more effective than CTLA-4 monoclonal antibody (mAB) monotherapy. Second-generation CTLA-4 antibodies are currently being developed to mitigate immune-related adverse events (irAEs) and augment antitumor efficacy. This review examines anti-CTLA-4 mAB in BC, both as monotherapy and in combination with other treatments, and sheds light on ongoing clinical trials, novel CTLA-4 therapeutic strategies, and potential utility of biomarkers in BC.


Assuntos
Neoplasias da Mama , Antígeno CTLA-4 , Humanos , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Feminino , Imunoterapia/métodos , Microambiente Tumoral/imunologia , Anticorpos Monoclonais/uso terapêutico , Linfócitos T Reguladores/imunologia , Linfócitos do Interstício Tumoral/imunologia
4.
Aesthetic Plast Surg ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740623

RESUMO

BACKGROUND: Immediate action is required to address some complications of implant-based reconstruction after mastectomy to prevent reconstruction failure. Implant exchange may be simple but poses the risk of further complications while autologous flap reconstruction seems more complex but may pose less subsequent risk. Which of these is preferable remains unclear. METHODS: We reviewed thirty-two female breast cancer patients who had serious complications with their breast implants after post-mastectomy reconstruction. Latissimus dorsi flap (LDF) patients underwent explantation and immediate reconstruction with an LDF, while implant exchange (IE) patients underwent immediate implant removal and exchange with an expander followed by delayed reconstruction with silicon or immediately with a smaller size silicone implant. RESULTS: LDF patients underwent a single operation with an average duration of care of 31 days compared to an average 1.8 procedures (p= 0.005) with an average duration of care of 129.9 days (p < 0.001) among IE patients. Seven IE (50%) had serious complications that required subsequent revision while no LDF patients required additional procedures. Patient overall satisfaction and esthetics results were also superior in the LDF group at six months. CONCLUSION: In patients who want to reconstructively rescue and salvage their severely infected or exposed breast implant, the LDF offers an entirely autologous solution. LDF reconstruction in this setting allows patients to avoid an extended duration of care, reduces their risk of complications, and preserves the reconstructive process. LEVEL OF EVIDENCE III: The journal asks authors to assign a level of evidence to each article. For a complete description of Evidence-Based Medicine ratings, see the Table of Contents or the online Instructions for Authors at www.springer.com/00266 .

5.
J Chem Inf Model ; 64(6): 2021-2034, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38457778

RESUMO

The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates biological signals to control various complicated cellular functions. It plays a crucial role in environmental sensing and xenobiotic metabolism. Dysregulation of AhR is associated with health concerns, including cancer and immune system disorders. Upon binding to AhR ligands, AhR, along with heat shock protein 90 and other partner proteins undergoes a transformation in the nucleus, heterodimerizes with the aryl hydrocarbon receptor nuclear translocator (ARNT), and mediates numerous biological functions by inducing the transcription of various AhR-responsive genes. In this manuscript, the 3-dimensional structure of the entire human AhR is obtained using an artificial intelligence tool, and molecular dynamics (MD) simulations are performed to study different structural conformations. These conformations provide insights into the protein's function and movement in response to ligand binding. Understanding the dynamic behavior of AhR will contribute to the development of targeted therapies for associated health conditions. Therefore, we employ well-tempered metadynamics (WTE-metaD) simulations to explore the conformational landscape of AhR and obtain a better understanding of its functional behavior. Our computational results are in excellent agreement with previous experimental findings, revealing the closed and open states of helix α1 in the basic helix-loop-helix (bHLH domain) in the cytoplasm at the atomic level. We also predict the inactive form of AhR and identify Arginine 42 as a key residue that regulates switching between closed and open conformations in existing AhR modulators.


Assuntos
Inteligência Artificial , Receptores de Hidrocarboneto Arílico , Humanos , Receptores de Hidrocarboneto Arílico/metabolismo , Ligantes , Translocador Nuclear Receptor Aril Hidrocarboneto/química , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo
6.
Arch Biochem Biophys ; 754: 109958, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499054

RESUMO

The aryl hydrocarbon receptor (AhR) functions as a vital ligand-activated transcription factor, governing both physiological and pathophysiological processes. Notably, it responds to xenobiotics, leading to a diverse array of outcomes. In the context of drug repurposing, we present here a combined approach of utilizing structure-based virtual screening and molecular dynamics simulations. This approach aims to identify potential AhR modulators from Drugbank repository of clinically approved drugs. By focusing on the AhR PAS-B binding pocket, our screening protocol included binding affinities calculations, complex stability, and interactions within the binding site as a filtering method. Comprehensive evaluations of all DrugBank small molecule database revealed ten promising hits. This included flibanserin, butoconazole, luliconazole, naftifine, triclabendazole, rosiglitazone, empagliflozin, benperidol, nebivolol, and zucapsaicin. Each exhibiting diverse binding behaviors and remarkably very low binding free energy. Experimental studies further illuminated their modulation of AhR signaling, and showing that they are consistently reducing AhR activity, except for luliconazole, which intriguingly enhances the AhR activity. This work demonstrates the possibility of using computational modelling as a quick screening tool to predict new AhR modulators from extensive drug libraries. Importantly, these findings hold immense therapeutic potential for addressing AhR-associated disorders. Consequently, it offers compelling prospects for innovative interventions through drug repurposing.


Assuntos
Receptores de Hidrocarboneto Arílico , Receptores de Hidrocarboneto Arílico/metabolismo , Sítios de Ligação , Ligação Proteica , Domínios Proteicos , Ligantes
7.
J Chem Inf Model ; 64(7): 2515-2527, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37870574

RESUMO

In the field of drug discovery, there is a substantial challenge in seeking out chemical structures that possess desirable pharmacological, toxicological, and pharmacokinetic properties. Complications arise when drugs interfere with the functioning of cardiac ion channels, leading to serious cardiovascular consequences. The discontinuation and removal of numerous approved drugs from the market or at late development stages in the pipeline due to such inhibitory effects further highlight the urgency of addressing this issue. Consequently, the early prediction of potential blockers targeting cardiac ion channels during the drug discovery process is of paramount importance. This study introduces a deep learning framework that computationally determines the cardiotoxicity associated with the voltage-gated potassium channel (hERG), the voltage-gated calcium channel (Cav1.2), and the voltage-gated sodium channel (Nav1.5) for drug candidates. The predictive capabilities of three feature representations─molecular fingerprints, descriptors, and graph-based numerical representations─are rigorously benchmarked. Additionally, a novel training and evaluation data set framework is presented, enabling predictive model training of drug off-target cardiotoxicity using a comprehensive and large curated data set covering these three cardiac ion channels. To facilitate these predictions, a robust and comprehensive small molecule cardiotoxicity prediction tool named CToxPred has been developed. It is made available as open source under the permissive MIT license at https://github.com/issararab/CToxPred.


Assuntos
Cardiotoxicidade , Canais de Potássio Éter-A-Go-Go , Humanos , Benchmarking , Canais Iônicos , Descoberta de Drogas , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/química
8.
Life (Basel) ; 13(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36836712

RESUMO

The fruits, leaves, and bark of the guava (Psidium guajava) tree have traditionally been used to treat a myriad of ailments, especially in the tropical and subtropical regions. The various parts of the plant have been shown to exhibit medicinal properties, such as antimicrobial, antioxidant, anti-inflammatory, and antidiabetic activities. Recent studies have shown that the bioactive phytochemicals of several parts of the P. guajava plant exhibit anticancer activity. This review aims to present a concise summary of the in vitro and in vivo studies investigating the anticancer activity of the plant against various human cancer cell lines and animal models, including the identified phytochemicals that contributes to their activity via the different mechanisms. In vitro growth and cell viability studies, such as the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the sulforhodamine B (SRB) assay, and the trypan blue exclusion test, were conducted using P. guajava extracts and their biomolecules to assess their effects on human cancer cell lines. Numerous studies have showcased that the P. guajava plant and its bioactive molecules, especially those extracted from its leaves, selectively suppress the growth of human cancer cells without cytotoxicity against the normal cells. This review presents the potential of the extracts of P. guajava and the bioactive molecules derived from it, to be utilized as a feasible alternative or adjuvant treatment for human cancers. The availability of the plant also contributes towards its viability as a cancer treatment in developing countries.

9.
J Mol Graph Model ; 120: 108405, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36680816

RESUMO

The repolarizing current (Ikr) produced by the hERG potassium channel forms a major component of the cardiac action potential and blocking this current by small molecule drugs can lead to life-threatening cardiotoxicity. Understanding the mechanisms of drug-mediated hERG inhibition is essential to develop a second generation of safe drugs, with minimal cardiotoxic effects. Although various computational tools and drug design guidelines have been developed to avoid binding of drugs to the hERG pore domain, there are many other aspects that are still open for investigation. This includes the use computational modelling to study the implications of hERG mutations on hERG structure and trafficking, the interactions of hERG with hERG chaperone proteins and with membrane-soluble molecules, the mechanisms of drugs that inhibit hERG trafficking and drugs that rescue hERG mutations. The plethora of available experimental data regarding all these aspects can guide the construction of much needed robust computational structural models to study these mechanisms for the rational design of safe drugs.


Assuntos
Desenho de Fármacos , Canais de Potássio Éter-A-Go-Go , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/química , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/química , Humanos
10.
Comput Biol Med ; 152: 106442, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36566625

RESUMO

SHP2 (Src homology-2 domain-containing protein tyrosine phosphatase-2) is a cytoplasmic protein -tyrosine phosphatase encoded by the gene PTPN11. It plays a crucial role in regulating cell growth and differentiation. Specifically, SHP2 is an oncoprotein associated with developmental pathologies and several different cancer types, including gastric, leukemia and breast cancer and is of great therapeutic interest. Given these roles, current research efforts have focused on developing SHP2 inhibitors. Allosteric SHP2 inhibitors have been shown to be more selective and pharmacologically appealing compared to competitive catalytic inhibitors targeting SHP2. Nevertheless, there remains a need for novel allosteric inhibitor scaffolds targeting SHP2 to develop compounds with improved selectivity, cell permeability, and bioavailability. Towards this goal, this study applied various computational tools to screen over 6 million compounds against the allosteric site within SHP2. The top-ranked hits from our in-silico screening were validated using protein thermal shift and biolayer interferometry assays, revealing three potent compounds. Kinetic binding assays were employed to measure the binding affinities of the top-ranked compounds and demonstrated that they all bind to SHP2 with a nanomolar affinity. Hence the compounds and the computational workflow described herein provide an effective approach for identifying and designing a generation of improved allosteric inhibitors of SHP2.


Assuntos
Neoplasias da Mama , Inibidores Enzimáticos , Humanos , Feminino , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/farmacologia , Proliferação de Células , Diferenciação Celular
11.
J Mol Graph Model ; 118: 108339, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183684

RESUMO

Aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that acts as a machinery that controls the expression of many genes, including cytochrome P450 CYP1A1, CYP1A2 and CYP1B1. It plays a principal role in numerous biological and toxicological functions, making it a promising target for developing therapeutic agents. Several novel small molecules targeting the AhR signaling pathway are currently under investigation as antitumor agents. Some have already advanced into clinical trials in patients with various tumors. Activation of AhR by diverse chemicals either endogenous or exogenous is initiated by the binding of these ligands to the PAS-B domain, which modulates AhR functions. There is, however, limited information about how various ligands interact with the PAS-B domain for activating or inhibiting the AhR. To better understand the mode of action of AhR agonists/antagonists. The current work proposes a combination of several computational tools to build dynamical models for the PAS-B domain bound to different ligands in mouse and human. Our findings reveal the essential roles of specific PAS-B residues (e.g., S365, V381& Q383), which mediate the AhR ligand-binding process. Our results also explain how these residues regulate the promiscuity of AhR in accommodating various chemicals in its binding PAS-B ligand-binding pocket.


Assuntos
Regulação da Expressão Gênica , Receptores de Hidrocarboneto Arílico , Humanos , Camundongos , Animais , Receptores de Hidrocarboneto Arílico/metabolismo , Ligantes , Ligação Proteica
12.
World J Clin Oncol ; 14(12): 549-569, 2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38179405

RESUMO

Adenosine triphosphate (ATP) induced cell death (AICD) is a critical cellular process that has garnered substantial scientific interest for its profound relevance to cancer biology and to therapeutic interventions. This comprehensive review unveils the intricate web of AICD mechanisms and their intricate connections with cancer biology. This review offers a comprehensive framework for comprehending the multifaceted role of AICD in the context of cancer. This is achieved by elucidating the dynamic interplay between systemic and cellular ATP homeostasis, deciphering the intricate mechanisms governing AICD, elucidating its intricate involvement in cancer signaling pathways, and scrutinizing validated key genes. Moreover, the exploration of AICD as a potential avenue for cancer treatment underscores its essential role in shaping the future landscape of cancer therapeutics.

13.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233156

RESUMO

The fungal toxin aflatoxin B1 (AB1) and its reactive intermediate, aflatoxin B1-8, 9 epoxide, could cause liver cancer by inducing DNA adducts. AB1 exposure can induce changes in the expression of several cancer-related genes. In this study, the effect of AB1 exposure on breast cancer MCF7 and normal breast MCF10A cell lines at the phenotypic and epigenetic levels was investigated to evaluate its potential in increasing the risk of breast cancer development. We hypothesized that, even at low concentrations, AB1 can cause changes in the expression of important genes involved in four pathways, i.e., p53, cancer, cell cycle, and apoptosis. The transcriptomic levels of BRCA1, BRCA2, p53, HER1, HER2, cMyc, BCL2, MCL1, CCND1, WNT3A, MAPK1, MAPK3, DAPK1, Casp8, and Casp9 were determined in MCF7 and MCF10A cells. Our results illustrate that treating both cells with AB1 induced cytotoxicity and apoptosis with reduction in cell viability in a concentration-dependent manner. Additionally, AB1 reduced reactive oxygen species levels. Phenotypically, AB1 caused cell-cycle arrest at G1, hypertrophy, and increased cell migration rates. There were changes in the expression levels of several tumor-related genes, which are known to contribute to activating cancer pathways. The effects of AB1 on the phenotype and epigenetics of both MCF7 and MCF10A cells associated with cancer development observed in this study suggest that AB1 is a potential risk factor for developing breast cancer.


Assuntos
Aflatoxina B1 , Proteína Supressora de Tumor p53 , Aflatoxina B1/toxicidade , Apoptose/genética , Linhagem Celular Tumoral , Adutos de DNA/farmacologia , Compostos de Epóxi/farmacologia , Humanos , Células MCF-7 , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Fenótipo , Espécies Reativas de Oxigênio/farmacologia , Proteína Supressora de Tumor p53/genética
14.
Front Oncol ; 12: 819172, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372043

RESUMO

Inhibition of DNA repair enzymes is an attractive target for increasing the efficacy of DNA damaging chemotherapies. The ERCC1-XPF heterodimer is a key endonuclease in numerous single and double strand break repair processes, and inhibition of the heterodimerization has previously been shown to sensitize cancer cells to DNA damage. In this work, the previously reported ERCC1-XPF inhibitor 4 was used as the starting point for an in silico study of further modifications of the piperazine side-chain. A selection of the best scoring hits from the in silico screen were synthesized using a late stage functionalization strategy which should allow for further iterations of this class of inhibitors to be readily synthesized. Of the synthesized compounds, compound 6 performed the best in the in vitro fluorescence based endonuclease assay. The success of compound 6 in inhibiting ERCC1-XPF endonuclease activity in vitro translated well to cell-based assays investigating the inhibition of nucleotide excision repair and disruption of heterodimerization. Subsequently compound 6 was shown to sensitize HCT-116 cancer cells to treatment with UVC, cyclophosphamide, and ionizing radiation. This work serves as an important step towards the synergistic use of DNA repair inhibitors with chemotherapeutic drugs.

15.
Comput Biol Med ; 139: 104956, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34695683

RESUMO

Mucormycosis is a severe fungal infection reported in many cancer survivors, diabetic and immune-suppressed patients during organ transplants. A vast spark in the reported COVID-19 cases is noticed in India during the second wave in May 2021, when Mucormycosis is declared an epidemic. Despite being a rare disease, the mortality rate associated with Mucormycosis is more than 40%. Spore coat proteins (CotH) are essential proteins in many pathogenic bacteria and fungi. CotH3 was reported as the vital protein required for fungal virulence in Mucormycosis. We previously reported the involvement of the host cell-surface receptor GRP78 in SARS-CoV-2 spike recognition. Additionally, GRP78 is known to be the virulence factor during Mucormycosis. Using state-of-the-art structural bioinformatics and molecular modeling tools, we predicted the GRP78 binding site to the Rhizopus delemar CotH3 protein. Our findings pave the way toward rationally designing small molecule inhibitors targeting the GRP78 and its counter proteins in both pathogenic viral (SARS-CoV-2 spike) and fungal (R. delemar CotH3) diseases.


Assuntos
COVID-19 , Chaperona BiP do Retículo Endoplasmático , Mucormicose , Humanos , Virulência
16.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638895

RESUMO

Beta-Caryophyllene (BCP), a naturally occurring sesquiterpene abundantly found in cloves, hops, and cannabis, is the active candidate of a relatively new group of vascular-inhibiting compounds that aim to block existing tumor blood vessels. Previously, we have reported the anti-cancer properties of BCP by utilizing a series of in-vitro anti-tumor-related assays using human colorectal carcinoma cells. The present study aimed to investigate the effects of BCP on in-vitro, ex-vivo, and in-vivo models of anti-angiogenic assays and evaluate its anti-cancer activity in xenograft tumor (both ectopic and orthotopic) mice models of human colorectal cancer. Computational structural analysis and an apoptosis antibody array were also performed to understand the molecular players underlying this effect. BCP exhibited strong anti-angiogenic activity by blocking the migration of endothelial cells, tube-like network formation, suppression of vascular endothelial growth factor (VEGF) secretion from human umbilical vein endothelial cells and sprouting of rat aorta microvessels. BCP has a probable binding at Site#0 on the surface of VEGFR2. Moreover, BCP significantly deformed the vascularization architecture compared to the negative control in a chick embryo chorioallantoic membrane assay. BCP showed a remarkable reduction in tumor size and fluorescence molecular tomography signal intensity in all the mice treated with BCP, in a dose-dependent relationship, in ectopic and orthotopic tumor xenograft models, respectively. The histological analysis of the tumor from BCP-treated mice revealed a clear reduction of the density of vascularization. In addition, BCP induced apoptosis through downregulation of HSP60, HTRA, survivin, and XIAP, along with the upregulation of p21 expressions. These results suggest that BCP acts at multiple stages of angiogenesis and could be used as a promising therapeutic candidate to halt the growth of colorectal tumor cells.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Colorretais/prevenção & controle , Neovascularização Patológica/prevenção & controle , Sesquiterpenos Policíclicos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/efeitos dos fármacos , Neoplasias Colorretais/irrigação sanguínea , Células HCT116 , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos Nus , Microvasos/efeitos dos fármacos , Ratos Sprague-Dawley
17.
Expert Opin Ther Targets ; 25(5): 347-363, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34056985

RESUMO

Introduction:T cell functions are altered during chronic viral infections and tumor development. This is mainly manifested by significant changes in T cells' epigenetic and metabolic landscapes, pushing them into an 'exhausted' state. Reversing this T cell exhaustion has been emerging as a 'game-changing' therapeutic approach against cancer and chronic viral infection.Areas covered:This review discusses the cellular pathways related to T cell exhaustion, and the clinical development and possible cellular targets that can be exploited therapeutically to reverse this exhaustion. We searched various databases (e.g. Google Scholar, PubMed, Elsevier, and other scientific database sites) using the keywords T cell exhaustion, T cell activation, co-inhibitory receptors, and reversing T cell exhaustion.Expert opinion:The discovery of the immune checkpoints pathways represents a significant milestone toward understanding and reversing T cell exhaustion. Antibodies that target these pathways have already demonstrated promising activities in reversing T cell exhaustion. Nevertheless, there are still many associated limitations. In this context, next-generation alternatives are on the horizon. This includes the use of small molecules to block the immune checkpoints' receptors, combining them with other treatments, and identifying novel, safer and more effective immunotherapeutic targets.


Assuntos
Neoplasias/terapia , Linfócitos T/imunologia , Viroses/terapia , Animais , Epigênese Genética , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Terapia de Alvo Molecular , Neoplasias/imunologia , Viroses/imunologia
18.
Front Oncol ; 11: 628138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747948

RESUMO

The burden of breast cancer is imposing a huge global problem. Drug discovery research and novel approaches to treat breast cancer have been carried out extensively over the last decades. Although immune checkpoint inhibitors are showing promising preclinical and clinical results in treating breast cancer, they are facing multiple limitations. From an immunological perspective, a recent report highlighted breast cancer as an "inflamed tumor" with an immunosuppressive microenvironment. Consequently, researchers have been focusing on identifying novel immunological targets that can tune up the tumor immune microenvironment. In this context, several novel non-classical immune targets have been targeted to determine their ability to uncouple immunoregulatory pathways at play in the tumor microenvironment. This article will highlight strategies designed to increase the immunogenicity of the breast tumor microenvironment. It also addresses the latest studies on targets which can enhance immune responses to breast cancer and discusses examples of preclinical and clinical trial landscapes that utilize these targets.

19.
Sci Rep ; 10(1): 16262, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004839

RESUMO

Off-target interactions of drugs with the human ether-à-go-go related gene 1 (hERG1) channel have been associated with severe cardiotoxic conditions leading to the withdrawal of many drugs from the market over the last decades. Consequently, predicting drug-induced hERG-liability is now a prerequisite in any drug discovery campaign. Understanding the atomic level interactions of drug with the channel is essential to guide the efficient development of safe drugs. Here we utilize the recent cryo-EM structure of the hERG channel and describe an integrated computational workflow to characterize different drug-hERG interactions. The workflow employs various structure-based approaches and provides qualitative and quantitative insights into drug binding to hERG. Our protocol accurately differentiated the strong blockers from weak and revealed three potential anchoring sites in hERG. Drugs engaging in all these sites tend to have high affinity towards hERG. Our results were cross-validated using a fluorescence polarization kit binding assay and with electrophysiology measurements on the wild-type (WT-hERG) and on the two hERG mutants (Y652A-hERG and F656A-hERG), using the patch clamp technique on HEK293 cells. Finally, our analyses show that drugs binding to hERG disrupt and hijack certain native-structural networks in the channel, thereby, gaining more affinity towards hERG.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Biologia Computacional/métodos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Canais de Potássio Éter-A-Go-Go/genética , Células HEK293 , Humanos , Técnicas de Patch-Clamp , Relação Estrutura-Atividade
20.
Oral Surg Oral Med Oral Pathol Oral Radiol ; 129(5): e243-e248, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32111580

RESUMO

OBJECTIVE: The aim of this study was to assess the existence of ductal changes in diabetics using sialendoscopy. STUDY DESIGN: Twenty patients and 10 volunteers received bilateral parotid diagnostic sialendoscopy. Group I included 10 patients with uncontrolled diabetes (UCD); group II, 10 patients with controlled diabetes (CD); and group III, 10 nondiabetic controls (CG). Expected ductal changes were examined in 3 proposed distinct zones. A χ2 test was used to compare groups. RESULTS: Ductal pathologic conditions were significantly higher in diabetic patients in all zones. Abnormalities were classified as stenosis, hyperemia, or others. In UCD, stenosis percentage was 55%, 90%, and 100% in zones 1, 2, and 3, respectively, compared with 30%, 40%, and 55% in CD and 5%, 5%, and 0% in CG (P < .01). Hyperemic changes in UCD were 90%, 90%, and 40% compared with 50%, 50%, and 20% in CD (P < .01) and 0% in CG. Comparing zones in UCD and CD indicated that stenosis increased significantly toward the proximal end, whereas hyperemia prevailed toward the distal end. CONCLUSIONS: Significant ductal abnormalities were detected in the parotids of UCD and CD patients compared with CG. Ductal changes were higher in UCD compared with CD.


Assuntos
Diabetes Mellitus , Endoscopia , Constrição Patológica , Humanos , Glândula Parótida , Ductos Salivares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA