Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37375191

RESUMO

Zaitra, Thymus satureioides, is an aromatic plant with a long history of use in traditional medicine. In this study, we assessed the mineral composition, nutritional value, phytocontents, and dermatological properties of the aerial parts of T. satureioides. The plant contained high contents of calcium and iron, moderate levels of magnesium, manganese, and zinc, and low contents of total nitrogen, total phosphorus, total potassium, and copper. It is rich in several amino acids, including asparagine, 4-hydroxyproline, isoleucine, and leucine, and the essential amino acids account for 60.8%. The extract contains considerable amounts of polyphenols and flavonoids (TPC = 118.17 mg GAE/g extract and TFC = 32.32 mg quercetin/g extract). It also comprises 46 secondary metabolites, identified through LC-MS/MS analysis, belonging to phenolic acids, chalcones, and flavonoids. The extract elicited pronounced antioxidant activities, inhibited the growth of P. aeruginosa (MIC = 50 mg/mL), and reduced biofilm formation by up to 35.13% using the » sub-MIC of 12.5 mg/mL. Moreover, bacterial extracellular proteins and exopolysaccharides were diminished by 46.15% and 69.04%, respectively. Likewise, the swimming of the bacterium was impaired (56.94% decrease) in the presence of the extract. In silico, skin permeability and sensitization effects revealed that out of the 46 identified compounds, 33 were predicted to be exempt from any skin sensitivity risk (Human Sensitizer Score ≤ 0.5), while extensive skin permeabilities were observed (Log Kp = -3.35--11.98 cm/s). This study provides scientific evidence about the pronounced activities of T. satureioides, supports its traditional uses, and promotes its utilization in the development of new drugs, food supplements, and dermatological agents.


Assuntos
Extratos Vegetais , Espectrometria de Massas em Tandem , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Cromatografia Líquida , Flavonoides/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Antioxidantes/química , Minerais/análise , Proteínas de Bactérias , Valor Nutritivo
2.
Int J Mol Cell Med ; 7(2): 133-145, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30276168

RESUMO

Fungal diseases are currently a serious public health problem, due to the limited number of fact-based effective principles, and the emergence of resistant strains to the polyenic antifungals. The aim of this study was to screen, for non-polyenic antifungals production by Actinobacteria, and to validate the screening program by characterizingthe produced compounds.Actinobacteria isolates were tested against four clinic human-pathogenic fungi isolated from Hospital Mohammed V Rabat, Morocco. The production of non-polyenic antifungal metabolites by active isolates was investigated based on the yeast cell specificity as challenging targets, antibacterial activity, activity against resistant Candida tropicalis R2 and Pythium irregular (resistant to polyenes), inhibition of antifungal activity by the addition of exogenous ergosterol, and the UV-visible light spectrophotometric analysis of the active crude extracts.The antifungal compound produced was purified using various chromatographic techniques and the selected producing strain was identified using the polyphasic approach.Among 480 Actinobacteria isolates, 55 showed antifungal activity against all tested clinically derived fungi. After performing the screening program, 4 Actinobacteria that hadall the desired criteriawere selected. Using the polyphasic approach, the taxonomic position of the selected Streptomyces AS25, isolated from rhizospheric soil of Alyssum spinosum, showed that it belongs to Streptomyces genus with 100% partial 16S similarity with Streptomyces albidoflavus NBRC13010. On the basis of HPLC and mass spectrometry, the purified compound produced by Streptomyces AS25 was identified as a non-polyenic lactone, antimycin A19, which has been found for the first time to be produced by Streptomyces albidoflavus strain. Following the obtained results, it is important to note that our screening criteria for non-polyenic antifungals have been validated and the rhizospheric soil represents an interesting source to isolate Actinobacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA