Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 930: 172608, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38653421

RESUMO

The effect of the lead (Pb), cadmium (Cd), mercury (Hg) and arsenic (As) mixture (MIX) on hematotoxicity development was investigated trough combined approach. In vivo subacute study (28 days) was performed on rats (5 per group): a control group and five groups orally exposed to increasing metal(loid) mixture doses, MIX 1- MIX 5 (mg/kg bw./day) (Pb: 0.003, 0.01, 0.1, 0.3, 1; Cd: 0.01, 0.03, 0.3, 0.9, 3; Hg: 0.0002, 0.0006, 0.006, 0.018, 0.06; As: 0.002, 0.006, 0.06, 0.18, 0.6). Blood was taken for analysis of hematological parameters and serum iron (Fe) analysis. MIX treatment increased thrombocyte/platelet count and MCHC and decreased Hb, HCT, MCV and MCH values compared to control, indicating the development of anemia and thrombocytosis. BMDIs with the narrowest width were identified for MCH [pg] (6.030E-03 - 1.287E-01 mg Pb/kg bw./day; 2.010E-02 - 4.290E-01 mg Cd/kg bw./day; 4.020E-04 - 8.580E-03 mg Hg/kg bw./day; 4.020E-03 - 8.580E-02 mg As/kg bw./day). In silico analysis showed target genes connected with MIX and the development of: anemia - ACHE, GSR, PARP1, TNF; thrombocytosis - JAK2, CALR, MPL, THPO; hematological diseases - FAS and ALAD. The main extracted pathways for anemia were related to apoptosis and oxidative stress; for thrombocytosis were signaling pathways of Jak-STAT and TPO. Changes in miRNAs and transcription factors enabled the mode of action (MoA) development based on the obtained results, contributing to mechanistic understanding and hematological risk related to MIX exposure.


Assuntos
Arsênio , Cádmio , Chumbo , Mercúrio , Animais , Ratos , Chumbo/toxicidade , Cádmio/toxicidade , Mercúrio/toxicidade , Arsênio/toxicidade , Simulação por Computador , Masculino , Poluentes Ambientais/toxicidade
2.
Antioxidants (Basel) ; 13(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38397745

RESUMO

Sulforaphane (SFN), which is a hydrolysis product from glucoraphanin, a compound found in cruciferous vegetables, has been studied for its potential health benefits, particularly in disease prevention and treatment. SFN has proven to be effective in combating different types of cancer by inhibiting the proliferation of tumors and triggering apoptosis. This dual action has been demonstrated to result in a reduction in tumor size and an enhancement of survival rates in animal models. SFN has also shown antidiabetic and anti-obesity effects, improving glucose tolerance and reducing fat accumulation. SFN's ability to activate Nrf2, a transcription factor regulating oxidative stress and inflammation in cells, is a primary mechanism behind its anticancerogenic and antidiabetic effects. Its antioxidant, anti-inflammatory, and anti-apoptotic properties are also suggested to provide beneficial effects against neurodegenerative diseases. The potential health benefits of SFN have led to increased interest in its use as a dietary supplement or adjunct to chemotherapy, but there are insufficient data on its efficacy and optimal doses, as well as its safety. This review aims to present and discuss SFN's potential in treating various diseases, such as cancer, diabetes, cardiovascular diseases, obesity, and neurodegenerative diseases, focusing on its mechanisms of action. It also summarizes studies on the pharmacological and toxicological potential of SFN in in vitro and animal models and explores its protective role against toxic compounds through in vitro and animal studies.

3.
Cancers (Basel) ; 16(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38339275

RESUMO

Cancer is a leading cause of death worldwide, for which finding the optimal therapy remains an ongoing challenge. Drug resistance, toxic side effects, and a lack of specificity pose significant difficulties in traditional cancer treatments, leading to suboptimal clinical outcomes and high mortality rates among cancer patients. The need for alternative therapies is crucial, especially for those resistant to conventional methods like chemotherapy and radiotherapy or for patients where surgery is not possible. Over the past decade, a novel approach known as bacteria-mediated cancer therapy has emerged, offering potential solutions to the limitations of conventional treatments. An increasing number of in vitro and in vivo studies suggest that the subtype of highly virulent Pseudomonas aeruginosa bacterium called Pseudomonas aeruginosa mannose-sensitive-hemagglutinin (PA-MSHA) can successfully inhibit the progression of various cancer types, such as breast, lung, and bladder cancer, as well as hepatocellular carcinoma. PA-MSHA inhibits the growth and proliferation of tumor cells and induces their apoptosis. Proposed mechanisms of action include cell-cycle arrest and activation of pro-apoptotic pathways regulated by caspase-9 and caspase-3. Moreover, clinical studies have shown that PA-MSHA improved the effectiveness of chemotherapy and promoted the activation of the immune response in cancer patients without causing severe side effects. Reported adverse reactions were fever, skin irritation, and pain, attributed to the overactivation of the immune response. This review aims to summarize the current knowledge obtained from in vitro, in vivo, and clinical studies available at PubMed, Google Scholar, and ClinicalTrials.gov regarding the use of PA-MSHA in cancer treatment in order to further elucidate its pharmacological and toxicological properties.

4.
Front Endocrinol (Lausanne) ; 14: 1145153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37800147

RESUMO

Introduction: Nickel (Ni) is one of the well-known toxic metals found in the environment. However, its influence on thyroid function is not explored enough. Hence, the aim of this study was to analyse the potential of Ni to disrupt thyroid function by exploring the relationship between blood Ni concentration and serum hormone levels (TSH, T4, T3, fT4 and fT3), as well as the parameters of thyroid homeostasis (SPINA-GT and SPINA-GD) by using correlation analysis and Benchmark (BMD) concept. Methods: Ni concentration was measured by ICP-MS method, while CLIA was used for serum hormone determination. SPINA Thyr software was used to calculate SPINA-GT and SPINA-GD parameters. BMD analysis was performed by PROAST software (70.1). The limitations of this study are the small sample size and the uneven distribution of healthy and unhealthy subjects, limited confounding factors, as well as the age of the subjects that could have influenced the obtained results. Results and discussion: The highest median value for blood Ni concentration was observed for the male population and amounted 8,278 µg/L. Accordingly, the statistically significant correlation was observed only in the male population, for Ni-fT4 and Ni-SPINA-GT pairs. The existence of a dose-response relationship was established between Ni and all the measured parameters of thyroid functions in entire population and in both sexes. However, the narrowest BMD intervals were obtained only in men, for Ni - SPINA-GT pair (1.36-60.9 µg/L) and Ni - fT3 pair (0.397-66.8 µg/L), indicating that even 78.68 and 83.25% of men in our study might be in 10% higher risk of Ni-induced SPINA-GT and fT3 alterations, respectively. Due to the relationship established between Ni and the SPINA-GT parameter, it can be concluded that Ni has an influence on the secretory function of the thyroid gland in men. Although the further research is required, these findings suggest possible role of Ni in thyroid function disturbances.


Assuntos
Glândula Tireoide , Tri-Iodotironina , Feminino , Humanos , Masculino , Tiroxina , Níquel/toxicidade , Benchmarking , Tireotropina
5.
Environ Res ; 227: 115818, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37004859

RESUMO

Toxic metals (cadmium (Cd), lead (Pb), mercury (Hg) and arsenic (As)) and plastificators (bis (2 - ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP)) and bisphenol A (BPA)) have been suggested to aid in colorectal carcinoma (CRC) advancement. Sulforaphane (SFN), isothiocyanate from cruciferous vegetables, diminishes chemical carcinogenesis susceptibility, but has been shown to act as a friend or a foe depending on various factors. By conducting the mechanistic toxicogenomic data mining approach, this research aimed to determine if SFN can alleviate toxic-metal and/or phthalate/BPA mixture-induced CRC at the gene level. Comparative Toxicogenomics Database, ToppGene Suite portal, Cytoscape software, InteractiVenn and Gene Expression Omnibus (GEO) database (GEO2R tool) was used. Among the mutual genes for all the investigated substances, SFN had a protective impact only through PTGS2. Other proposed protective SFN-targets included ABCA1, ALDH2, BMP2, DPYD, MYC, SLCO2A1, and SOD2, only in the case of phthalates/BPA exposure. The only additional gene relevant for SFN protection against the toxic metal mixture-induced CRC was ABCB1. Additionally, the majority of the top 15 molecular pathways extracted for SFN impact on phthalate and BPA mixture-linked CRC development were directly linked with cancer development, which was not the case with the toxic metal mixture. The current research has indicated that SFN is a more effective chemoprotective agent against CRC induced by phthalates/BPA mixture than by toxic-metal mixture. It has also presented the value of computational methods as a simple tool for directing further research, selecting appropriate biomarkers and exploring the mechanisms of toxicity.


Assuntos
Neoplasias Colorretais , Mercúrio , Transportadores de Ânions Orgânicos , Ácidos Ftálicos , Humanos , Saúde Pública , Toxicogenética , Ácidos Ftálicos/toxicidade , Isotiocianatos/toxicidade , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/genética , Compostos Benzidrílicos/toxicidade , Aldeído-Desidrogenase Mitocondrial
6.
Toxicology ; 489: 153496, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36933645

RESUMO

The current study aimed to assess the connection between the mixture of lead (Pb), cadmium (Cd), arsenic (As), methylmercury (MeHg) and decabrominated diphenyl ether (decaBDE) and thyroid function, by using in silico toxicogenomic data-mining approach. To obtain the linkage between investigated toxic mixture and thyroid diseases (TDs), the Comparative Toxicogenomics Database (CTD) was used, while gene ontology (GO) enrichment analysis was performed by ToppGeneSuite portal. The analysis has shown 10 genes connected to all chemicals present in the mixture and TDs (CAT, GSR, IFNG, IL1B, IL4, IL6, MAPK1, SOD2, TGFB1, TNF), most of which were in co-expression (45.68%), or belonged to the same pathway (30.47%). Top 5 biological processes and molecular functions affected by the investigated mixture emphasized the role of two common mechanisms - oxidative stress and inflammation. Cytokines and inflammatory response was listed as the main molecular pathway that may be triggered by simultaneous exposure to toxic metal(oid)s and decaBDE and connected to TDs. The direct relations between Pb/decaBDE and redox status impairment in thyroid tissue was confirmed by our chemical-phenotype interaction analysis, while the strongest linkage between Pb, As and decaBDE and thyroid disorders was found. The obtained results provide better understanding of molecular mechanisms involved in the thyrotoxicity of the investigated mixture, and can be used to direct further research.


Assuntos
Arsênio , Doenças da Glândula Tireoide , Humanos , Chumbo , Cádmio/toxicidade , Arsênio/toxicidade , Doenças da Glândula Tireoide/induzido quimicamente , Doenças da Glândula Tireoide/genética , Éteres Fenílicos
7.
Biomed Pharmacother ; 160: 114316, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36731342

RESUMO

Sulforaphane (SFN) is a naturally occurring molecule present in plants from Brassica family. It becomes bioactive after hydrolytic reaction mediated by myrosinase or human gastrointestinal microbiota. Sulforaphane gained scientific popularity due to its antioxidant and anti-cancer properties. However, its toxicity profile and potential to cause adverse effects remain largely unidentified. Thus, this study aimed to generate SFN-triggered adverse outcome pathway (AOP) by looking at the relationship between SFN-chemical structure and its toxicity, as well as SFN-gene interactions. Quantitative structure-activity relationship (QSAR) analysis identified 2 toxophores (Derek Nexus software) that have the potential to cause chromosomal damage and skin sensitization in mammals or mutagenicity in bacteria. Data extracted from Comparative Toxicogenomics Database (CTD) linked SFN with previously proposed outcomes via gene interactions. The total of 11 and 146 genes connected SFN with chromosomal damage and skin diseases, respectively. However, network analysis (NetworkAnalyst tool) revealed that these genes function in wider networks containing 490 and 1986 nodes, respectively. The over-representation analysis (ExpressAnalyst tool) pointed out crucial biological pathways regulated by SFN-interfering genes. These pathways are uploaded to AOP-helpFinder tool which found the 2321 connections between 19 enriched pathways and SFN which were further considered as key events. Two major, interconnected AOPs were generated: first starting from disruption of biological pathways involved in cell cycle and cell proliferation leading to increased apoptosis, and the second one connecting activated immune system signaling pathways to inflammation and apoptosis. In both cases, chromosomal damage and/or skin diseases such as dermatitis or psoriasis appear as adverse outcomes.


Assuntos
Rotas de Resultados Adversos , Animais , Humanos , Isotiocianatos/farmacologia , Sulfóxidos , Transdução de Sinais , Apoptose , Mamíferos
8.
Food Chem Toxicol ; 172: 113582, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36581092

RESUMO

Environmentally relevant toxic substances may affect human health, provoking numerous harmful effects on central nervous, respiratory, cardiovascular, endocrine and reproductive system, and even cause various types of carcinoma. These substances, to which general population is constantly and simultaneously exposed, enter human body via food and water, but also by inhalation and dermal contact, while accumulating evidence suggests that probiotic cultures are able to efficiently adsorb and/or degrade them. Cell wall of probiotic bacteria/fungi, which contains structures such as exopolysaccharide, teichoic acid, protein and peptidoglycan components, is considered the main place of toxic substances adsorption. Moreover, probiotics are able to induce metabolism and degradation of various toxic substances, making them less toxic and more suitable for elimination. Other probable in vivo protective effects have also been suggested, including decreased intestinal absorption and increased excretion of toxic substances, prevented gut microbial dysbiosis, increase in the intestinal mucus secretion, decreased production of reactive oxygen species, reduction of inflammation, etc. Having all of this in mind, this review aims to summarize the state-of-the-art knowledge regarding the potential protective effects of different probiotic strains against environmentally relevant toxic substances (mycotoxins, polycyclic aromatic hydrocarbons, pesticides, perfluoroalkyl and polyfluoroalkyl substances, phthalates, bisphenol A and toxic metals).


Assuntos
Praguicidas , Probióticos , Humanos , Probióticos/farmacologia , Praguicidas/metabolismo , Intoxicação por Metais Pesados
9.
Arh Hig Rada Toksikol ; 73(2): 119-125, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35792766

RESUMO

Considering that some researchers point to a possible influence of air pollution on COVID-19 transmission, severity, and death rate, the aim of our in silico study was to determine the relationship between the key air pollutants [sulphur dioxide (SO), carbon monoxide (CO), 2particulate matter (PMx), nitrogen dioxide (NO2), and ozone (O3)] and COVID-19 complications using the publicly available toxicogenomic analytical and prediction tools: (i) Comparative Toxicogenomic Database (CTD) to identify genes common to air pollutants and COVID-19 complications; (ii) GeneMANIA to construct a network of these common and related genes; (iii) ToppGene Suite to extract the most important biological processes and molecular pathways; and (iv) DisGeNET to search for the top gene-disease pairs. SO2, CO, PMx, NO2, and O3 interacted with 6, 6, 18, 9, and 12 COVID-19-related genes, respectively. Four of these are common for all pollutants (IL10, IL6, IL1B, and TNF) and participate in most (77.64 %) physical interactions. Further analysis pointed to cytokine binding and cytokine-mediated signalling pathway as the most important molecular function and biological process, respectively. Other molecular functions and biological processes are mostly related to cytokine activity and inflammation, which might be connected to the cytokine storm and resulting COVID-19 complications. The final step singled out the link between the CEBPA gene and acute myelocytic leukaemia and between TNFRSF1A and TNF receptor-associated periodic fever syndrome. This indicates possible complications in COVID-19 patients suffering from these diseases, especially those living in urban areas with poor air quality.


Assuntos
Poluentes Atmosféricos , COVID-19 , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Citocinas , Análise de Dados , Humanos , Dióxido de Nitrogênio/toxicidade , Toxicogenética
10.
Environ Int ; 165: 107313, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35635964

RESUMO

The main objective of this research was to conduct a dose-response modeling between the internal dose of measured blood Cd, As, Hg, Ni, and Cr and hormonal response of serum testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH). The study included 207 male participants from subjects of 5 different cohorts (patients with prostate, testicular, and pancreatic cancer, patients suffering from various thyroid and metabolic disorders, as well as healthy volunteers), enrolled from January 2019 to May 2021 at the Clinical Centre of Serbia in Belgrade, Serbia. Benchmark dose-response modeling analysis was performed with the PROAST software version 70.1, showing the hormone levels as quantal data. The averaging technique was applied to compute the Benchmark dose (BMD) interval (BMDI), with benchmark response set at 10%. Dose-response relationships between metal/metalloid blood concentration and serum hormone levels were confirmed for all the investigated metals/metalloid and hormones. The narrowest BMDI was found for Cd-testosterone and Hg-LH pairs, indicative of high confidence in these estimates. Although further research is needed, the observed findings demonstrate that the BMD approach may prove to be significant in the dose-response modeling of human data.


Assuntos
Mercúrio , Metaloides , Benchmarking , Cádmio , Humanos , Hormônio Luteinizante , Masculino , Testosterona
11.
Environ Sci Pollut Res Int ; 29(43): 65211-65221, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35488155

RESUMO

Numerous risk factors have been associated with breast cancer (BC), exposure to metalloestrogen, like lead, being such. Since lead involvement in BC is still equivocal, we focused on lead levels in three compartments of BC patients, blood, healthy, and malignant tissues. Also, as the cholesterol role in cancer development was recognized at the beginning of the twentieth century and led to involvement in lipid profile impairment, we further extend our research on lipid profile and enzymes responsible for maintaining lipid balance in BC patients. Fifty-five women diagnosed with BC were enrolled in the study. Forty-one healthy women represented the control group. Lead levels in blood, healthy surrounding and malignant tissue, and lipid profile parameters in serum, were determined. Higher lead levels were obtained in surrounding healthy tissue samples compared to cancerous tissue samples, while blood lead levels of BC women did not differ significantly from the control group. The altered lipid profile scheme in women diagnosed with breast cancer contained significantly higher triglycerides levels (P < 0.001). Moreover, logistic regression analysis revealed triglycerides as a significant predictor of BC (OR = 2.6; P < 0.01). Although statistical significance was missing for lower paraoxonase-1 (PON-1) activities observed in BC women, multivariate logistic regression singled out PON-1 activities as significant BC predictors. The result of the present study further indicated oxidative status imbalance and tissue levels bioelements perturbation. Obtained results in the present study propose possible lead involvement in BC onset accompanied with bioelements redistribution and oxidative stress occurrence.


Assuntos
Neoplasias da Mama , Chumbo , Arildialquilfosfatase , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Colesterol , Feminino , Humanos , Chumbo/sangue , Triglicerídeos
12.
Biomed Pharmacother ; 146: 112598, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34959120

RESUMO

Colorectal cancer (CRC) is a significant global health burden that ranks as the third most diagnosed and second most common cause of cancer related deaths worldwide. New therapeutic strategies include chemoprevention and use of molecules which could prevent, suppress or reverse CRC progression such as sulforaphane (SFN). However, evidences about its safety in CRC patients are still lacking. The aim of this in silico investigation was to predict SFN-induced adverse effects in CRC patients by computational analysis. The study showed that 334 genes were consistently dysregulated in CRC (223 downregulated and 111 upregulated), while 38 were recognized as significant and might be used as predictive biomarkers for overall survival and metastasis (TCGA, GEO, R studio). Among them, SFN interacted with 86 genes, out of which 11 were marked as significant (correlate with overall prognosis and metastasis). Sulforaphane potentiates the overexpression of TIMP1, AURKA, and CEP55, and promotes inhibition of CRYAB, PLCE1, and MMP28, that might lead to the progression of CRC (CTD). Pathway enrichment analysis revealed that SFN stimulated Transcriptional activation of RUNX2, AURKA activation by TPX2, IL-10 signaling, while inhibited Differentiation of White and Brown Adipocyte process, an underlying pathway which inactivation led to obesity (Cytoscape ClueGo + CluePedia, DAVID). Thus, genome signature of CRC patients could serve as important factor when addressing the risk-to-benefit profile of SFN. Patients with colon cancer and increased expression of TIMP1, CCL20, SPP1, AURKA, CEP55, NEK2, SOX9 and CDK1, or downregulation of CRYAB, PLCE1, MMP28, BMP2 and PLAC8 may not be ideal candidates for SFN chemoprevention.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Isotiocianatos/efeitos adversos , Sulfóxidos/efeitos adversos , Adipócitos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Humanos , Isotiocianatos/uso terapêutico , Metástase Neoplásica/genética , Prognóstico , Análise Serial de Proteínas , Sulfóxidos/uso terapêutico , Análise de Sobrevida , Ativação Transcricional/efeitos dos fármacos
13.
Antioxidants (Basel) ; 10(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33918986

RESUMO

Nuclear factor erythroid 2-related factor 2 (Nrf2), an emerging regulator of cellular resistance to oxidants, serves as one of the key defensive factors against a range of pathological processes such as oxidative damage, carcinogenesis, as well as various harmful chemicals, including metals. An increase in human exposure to toxic metals via air, food, and water has been recently observed, which is mainly due to anthropogenic activities. The relationship between environmental exposure to heavy metals, particularly cadmium (Cd), lead (Pb), mercury (Hg), and nickel (Ni), as well as metaloid arsenic (As), and transition metal chromium (Cr), and the development of various human diseases has been extensively investigated. Their ability to induce reactive oxygen species (ROS) production through direct and indirect actions and cause oxidative stress has been documented in various organs. Taking into account that Nrf2 signaling represents an important pathway in maintaining antioxidant balance, recent research indicates that it can play a dual role depending on the specific biological context. On one side, Nrf2 represents a potential crucial protective mechanism in metal-induced toxicity, but on the other hand, it can also be a trigger of metal-induced carcinogenesis under conditions of prolonged exposure and continuous activation. Thus, this review aims to summarize the state-of-the-art knowledge regarding the functional interrelation between the toxic metals and Nrf2 signaling.

14.
Arh Hig Rada Toksikol ; 71(3): 197-204, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33074172

RESUMO

Most Pb and Cd neurotoxicity studies investigate exposure to either of the toxic metals alone, while data on co-exposure are scarce. The aim of our study was to fill that gap by investigating acute combined effects of Pb and Cd on redox and essential metal status in the brain of Wistar rats. Animals were randomised in four groups of six to eight rats, which received 15 or 30 mg/kg of Cd, 150 mg/kg of Pb, or 150 mg/kg of Pb + 15 mg/kg of Cd by gavage. The fifth, control, group received distilled water only. Co-treatment with Pb and Cd induced significant increase in malondialdehyde (MDA) and thiobarbituric acid-reactive substances (TBARS) compared to control and groups receiving either metal alone. This is of special importance, as MDA presence in the brain has been implicated in many neurodegenerative disorders. The groups did not significantly differ in Zn, Cu, Mn, and Fe brain levels. Our findings highlight the importance of metal mixture studies. Neurotoxicity assessments of single chemicals do not provide a real insight into exposure to mixtures in real life. Further research should look into interactions between these metals to reveal complex molecular mechanisms of their neurotoxicity.


Assuntos
Cádmio , Chumbo , Animais , Encéfalo , Cádmio/toxicidade , Chumbo/toxicidade , Oxirredução , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA