RESUMO
DDX17 is an RNA helicase shown to be involved in critical processes during the early phases of neuronal differentiation. Globally, we compiled a case-series of 11 patients with neurodevelopmental phenotypes harbouring de novo monoallelic variants in DDX17. All 11 patients in our case series had a neurodevelopmental phenotype, whereby intellectual disability, delayed speech and language, and motor delay predominated. We performed in utero cortical electroporation in the brain of developing mice, assessing axon complexity and outgrowth of electroporated neurons, comparing wild-type and Ddx17 knockdown. We then undertook ex vivo cortical electroporation on neuronal progenitors to quantitatively assess axonal development at a single cell resolution. Mosaic ddx17 crispants and heterozygous knockouts in Xenopus tropicalis were generated for assessment of morphology, behavioural assays, and neuronal outgrowth measurements. We further undertook transcriptomic analysis of neuroblastoma SH-SY5Y cells, to identify differentially expressed genes in DDX17-KD cells compared to controls. Knockdown of Ddx17 in electroporated mouse neurons in vivo showed delayed neuronal migration as well as decreased cortical axon complexity. Mouse primary cortical neurons revealed reduced axon outgrowth upon knockdown of Ddx17 in vitro. The axon outgrowth phenotype was replicated in crispant ddx17 tadpoles and in heterozygotes. Heterozygous tadpoles had clear neurodevelopmental defects and showed an impaired neurobehavioral phenotype. Transcriptomic analysis identified a statistically significant number of differentially expressed genes involved in neurodevelopmental processes in DDX17-KD cells compared to control cells. We have identified potential neurodevelopment disease-causing variants in a gene not previously associated with genetic disease, DDX17. We provide evidence for the role of the gene in neurodevelopment in both mammalian and non-mammalian species and in controlling the expression of key neurodevelopment genes.
RESUMO
Background: The COVID-19 pandemic has created pressure on healthcare systems worldwide. Tools that can stratify individuals according to prognosis could allow for more efficient allocation of healthcare resources and thus improved patient outcomes. It is currently unclear if blood gene expression signatures derived from patients at the point of admission to hospital could provide useful prognostic information. Methods: Gene expression of whole blood obtained at the point of admission from a cohort of 78 patients hospitalised with COVID-19 during the first wave was measured by high resolution RNA sequencing. Gene signatures predictive of admission to Intensive Care Unit were identified and tested using machine learning and topological data analysis, TopMD. Results: The best gene expression signature predictive of ICU admission was defined using topological data analysis with an accuracy: 0.72 and ROC AUC: 0.76. The gene signature was primarily based on differentially activated pathways controlling epidermal growth factor receptor (EGFR) presentation, Peroxisome proliferator-activated receptor alpha (PPAR-α) signalling and Transforming growth factor beta (TGF-ß) signalling. Conclusions: Gene expression signatures from blood taken at the point of admission to hospital predicted ICU admission of treatment naïve patients with COVID-19.
Assuntos
COVID-19 , COVID-19/genética , Receptores ErbB , Expressão Gênica , Humanos , Unidades de Terapia Intensiva , PPAR alfa , Pandemias , Fator de Crescimento Transformador betaRESUMO
Skipping of BRCA2 exon 3 (∆E3) is a naturally occurring splicing event, complicating clinical classification of variants that may alter ∆E3 expression. This study used multiple evidence types to assess pathogenicity of 85 variants in/near BRCA2 exon 3. Bioinformatically predicted spliceogenic variants underwent mRNA splicing analysis using minigenes and/or patient samples. ∆E3 was measured using quantitative analysis. A mouse embryonic stem cell (mESC) based assay was used to determine the impact of 18 variants on mRNA splicing and protein function. For each variant, population frequency, bioinformatic predictions, clinical data, and existing mRNA splicing and functional results were collated. Variant class was assigned using a gene-specific adaptation of ACMG/AMP guidelines, following a recently proposed points-based system. mRNA and mESC analysis combined identified six variants with transcript and/or functional profiles interpreted as loss of function. Cryptic splice site use for acceptor site variants generated a transcript encoding a shorter protein that retains activity. Overall, 69/85 (81%) variants were classified using the points-based approach. Our analysis shows the value of applying gene-specific ACMG/AMP guidelines using a points-based approach and highlights the consideration of cryptic splice site usage to appropriately assign PVS1 code strength.
Assuntos
Genes BRCA2 , Sítios de Splice de RNA , Animais , Humanos , Camundongos , Processamento Alternativo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS) is a rare congenital syndrome characterized by a range of phenotypes including optic atrophy and intellectual disability among other features. Pathogenic variants in the NR2F1 (nuclear receptor subfamily 2 group F member 1) gene have been linked to this condition. A recent report has shown that pathogenic variants in the start codon lead to decreased expression of the NR2F1 protein and a relatively mild phenotype, similar to that seen in whole gene deletions, and due to the lack of the dominant negative effect. Here we describe a severe case of BBSOAS with an initiation codon missense variant. The developmental delay, seizures, optic atrophy are in keeping with features observed in this condition, however this is the first report to describe colobomas and septo-optic dysplasia as associated features potentially extending the phenotype linked to BBSOAS. In addition, this is the first description of a severe phenotype linked to a de novo missense variant in the start codon of the NR2F1 gene.
Assuntos
Coloboma , Deficiência Intelectual , Atrofias Ópticas Hereditárias , Atrofia Óptica , Displasia Septo-Óptica , Fator I de Transcrição COUP/genética , Códon de Iniciação , Coloboma/genética , Humanos , Deficiência Intelectual/genética , Atrofias Ópticas Hereditárias/genética , Atrofia Óptica/diagnóstico , Atrofia Óptica/genética , Displasia Septo-Óptica/diagnóstico , Displasia Septo-Óptica/genéticaRESUMO
Germline pathogenic variants in BRCA1 confer a high risk of developing breast and ovarian cancer. The BRCA1 exon 11 (formally exon 10) is one of the largest exons and codes for the nuclear localization signals of the corresponding gene product. This exon can be partially or entirely skipped during pre-mRNA splicing, leading to three major in-frame isoforms that are detectable in most cell types and tissue, and in normal and cancer settings. However, it is unclear whether the splicing imbalance of this exon is associated with cancer risk. Here we identify a common genetic variant in intron 10, rs5820483 (NC_000017.11:g.43095106_43095108dup), which is associated with exon 11 isoform expression and alternative splicing, and with the risk of breast cancer, but not ovarian cancer, in BRCA1 pathogenic variant carriers. The identification of this genetic effect was confirmed by analogous observations in mouse cells and tissue in which a loxP sequence was inserted in the syntenic intronic region. The prediction that the rs5820483 minor allele variant would create a binding site for the splicing silencer hnRNP A1 was confirmed by pull-down assays. Our data suggest that perturbation of BRCA1 exon 11 splicing modifies the breast cancer risk conferred by pathogenic variants of this gene.
Assuntos
Neoplasias da Mama/genética , Éxons , Genes BRCA1 , Triagem de Portadores Genéticos , Predisposição Genética para Doença , Splicing de RNA , Feminino , Humanos , ÍntronsRESUMO
Angiotensin-converting enzyme 2 (ACE2) is the main entry point in airway epithelial cells for SARS-CoV-2. ACE2 binding to the SARS-CoV-2 protein spike triggers viral fusion with the cell plasma membrane, resulting in viral RNA genome delivery into the host. Despite ACE2's critical role in SARS-CoV-2 infection, full understanding of ACE2 expression, including in response to viral infection, remains unclear. ACE2 was thought to encode five transcripts and one protein of 805 amino acids. In the present study, we identify a novel short isoform of ACE2 expressed in the airway epithelium, the main site of SARS-CoV-2 infection. Short ACE2 is substantially upregulated in response to interferon stimulation and rhinovirus infection, but not SARS-CoV-2 infection. This short isoform lacks SARS-CoV-2 spike high-affinity binding sites and, altogether, our data are consistent with a model where short ACE2 is unlikely to directly contribute to host susceptibility to SARS-CoV-2 infection.
Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Células Epiteliais/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Chlorocebus aethiops , Éxons , Células HEK293 , Humanos , Interferons/imunologia , Ligação Proteica , Isoformas de Proteínas/genética , Sítios de Splice de RNA , RNA-Seq , Sistema Respiratório/citologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Transcriptoma , Regulação para Cima , Células VeroRESUMO
ABL1 is a proto-oncogene encoding a nonreceptor tyrosine kinase, best known in the somatic BCR-ABL fusion gene associated with chronic myeloid leukaemia. Recently, germline missense variants in ABL1 have been found to cause an autosomal dominant developmental syndrome with congenital heart disease, skeletal malformations and characteristic facies. Here, we describe a series of six new unrelated individuals with heterozygous missense variants in ABL1 (including four novel variants) identified via whole exome sequencing. All the affected individuals in this series recapitulate the phenotype of the ABL1 developmental syndrome and additionally we affirm that hearing impairment is a common feature of the condition. Four of the variants cluster in the myristoyl-binding pocket of ABL1, a region critical for auto-inhibitory regulation of the kinase domain. Bio-informatic analysis of transcript-wide conservation and germline/somatic variation reveals that this pocket region is subject to high missense constraint and evolutionary conservation. Functional work to investigate ABL1 kinase activity in vitro by transient transfection of HEK293T cells with variant ABL1 plasmid constructs revealed increased phosphorylation of ABL1-specific substrates compared to wild-type. The increased tyrosine kinase activity was suppressed by imatinib treatment. This case series of six new patients with germline heterozygous ABL1 missense variants further delineates the phenotypic spectrum of this condition and recognises microcephaly as a common finding. Our analysis supports an ABL1 gain-of-function mechanism due to loss of auto-inhibition, and demonstrates the potential for pharmacological inhibition using imatinib.
Assuntos
Deformidades do Pé/genética , Deformidades da Mão/genética , Perda Auditiva/genética , Cardiopatias Congênitas/genética , Proteínas Proto-Oncogênicas c-abl/genética , Adolescente , Adulto , Sítios de Ligação , Criança , Pré-Escolar , Feminino , Deformidades do Pé/patologia , Células HEK293 , Deformidades da Mão/patologia , Perda Auditiva/patologia , Cardiopatias Congênitas/patologia , Humanos , Masculino , Mutação de Sentido Incorreto , Ácido Mirístico/metabolismo , Fenótipo , Ligação Proteica , Proteínas Proto-Oncogênicas c-abl/química , Proteínas Proto-Oncogênicas c-abl/metabolismo , SíndromeRESUMO
Advances in technology have led to a massive expansion in the capacity for genomic analysis, with a commensurate fall in costs. The clinical indications for genomic testing have evolved markedly; the volume of clinical sequencing has increased dramatically; and the range of clinical professionals involved in the process has broadened. There is general acceptance that our early dichotomous paradigms of variants being pathogenic-high risk and benign-no risk are overly simplistic. There is increasing recognition that the clinical interpretation of genomic data requires significant expertise in disease-gene-variant associations specific to each disease area. Inaccurate interpretation can lead to clinical mismanagement, inconsistent information within families and misdirection of resources. It is for this reason that 'national subspecialist multidisciplinary meetings' (MDMs) for genomic interpretation have been articulated as key for the new NHS Genomic Medicine Service, of which Cancer Variant Interpretation Group UK (CanVIG-UK) is an early exemplar. CanVIG-UK was established in 2017 and now has >100 UK members, including at least one clinical diagnostic scientist and one clinical cancer geneticist from each of the 25 regional molecular genetics laboratories of the UK and Ireland. Through CanVIG-UK, we have established national consensus around variant interpretation for cancer susceptibility genes via monthly national teleconferenced MDMs and collaborative data sharing using a secure online portal. We describe here the activities of CanVIG-UK, including exemplar outputs and feedback from the membership.
Assuntos
Testes Genéticos , Variação Genética/genética , Genômica , Neoplasias/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Irlanda/epidemiologia , Masculino , Neoplasias/epidemiologia , Neoplasias/patologia , Reino Unido/epidemiologiaRESUMO
CTNND1 encodes the p120-catenin (p120) protein, which has a wide range of functions, including the maintenance of cell-cell junctions, regulation of the epithelial-mesenchymal transition and transcriptional signalling. Due to advances in next-generation sequencing, CTNND1 has been implicated in human diseases including cleft palate and blepharocheilodontic (BCD) syndrome albeit only recently. In this study, we identify eight novel protein-truncating variants, six de novo, in 13 participants from nine families presenting with craniofacial dysmorphisms including cleft palate and hypodontia, as well as congenital cardiac anomalies, limb dysmorphologies and neurodevelopmental disorders. Using conditional deletions in mice as well as CRISPR/Cas9 approaches to target CTNND1 in Xenopus, we identified a subset of phenotypes that can be linked to p120-catenin in epithelial integrity and turnover, and additional phenotypes that suggest mesenchymal roles of CTNND1. We propose that CTNND1 variants have a wider developmental role than previously described and that variations in this gene underlie not only cleft palate and BCD but may be expanded to a broader velocardiofacial-like syndrome.
Assuntos
Cateninas/genética , Fenda Labial/genética , Fissura Palatina/genética , Anormalidades Craniofaciais/genética , Ectrópio/genética , Cardiopatias Congênitas/genética , Anormalidades Dentárias/genética , Adolescente , Adulto , Animais , Anodontia/diagnóstico por imagem , Anodontia/genética , Anodontia/fisiopatologia , Criança , Pré-Escolar , Fenda Labial/diagnóstico por imagem , Fenda Labial/fisiopatologia , Fissura Palatina/diagnóstico por imagem , Fissura Palatina/fisiopatologia , Anormalidades Craniofaciais/diagnóstico por imagem , Anormalidades Craniofaciais/fisiopatologia , Modelos Animais de Doenças , Ectrópio/diagnóstico por imagem , Ectrópio/fisiopatologia , Feminino , Predisposição Genética para Doença , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/fisiopatologia , Humanos , Masculino , Camundongos , Anormalidades Dentárias/diagnóstico por imagem , Anormalidades Dentárias/fisiopatologia , Xenopus , Adulto Jovem , delta CateninaRESUMO
Germline mutations in fundamental epigenetic regulatory molecules including DNA methyltransferase 3 alpha (DNMT3A) are commonly associated with growth disorders, whereas somatic mutations are often associated with malignancy. We profiled genome-wide DNA methylation patterns in DNMT3A c.2312G > A; p.(Arg771Gln) carriers in a large Amish sibship with Tatton-Brown-Rahman syndrome (TBRS), their mosaic father, and 15 TBRS patients with distinct pathogenic de novo DNMT3A variants. This defined widespread DNA hypomethylation at specific genomic sites enriched at locations annotated as genes involved in morphogenesis, development, differentiation, and malignancy predisposition pathways. TBRS patients also displayed highly accelerated DNA methylation aging. These findings were most marked in a carrier of the AML-associated driver mutation p.Arg882Cys. Our studies additionally defined phenotype-related accelerated and decelerated epigenetic aging in two histone methyltransferase disorders: NSD1 Sotos syndrome overgrowth disorder and KMT2D Kabuki syndrome growth impairment. Together, our findings provide fundamental new insights into aberrant epigenetic mechanisms, the role of epigenetic machinery maintenance, and determinants of biological aging in these growth disorders.
Assuntos
Envelhecimento/genética , DNA (Citosina-5-)-Metiltransferases/genética , Epigênese Genética , Transtornos do Crescimento/genética , Mutação , Anormalidades Múltiplas/genética , Adolescente , Adulto , Amish/genética , Criança , Metilação de DNA , DNA Metiltransferase 3A , Face/anormalidades , Doenças Hematológicas/genética , Humanos , Deficiência Intelectual/genética , Leucemia Mieloide Aguda/genética , Masculino , Metiltransferases , Morfogênese/genética , Síndrome , Doenças Vestibulares/genética , Adulto JovemRESUMO
BACKGROUND: Neurofibromatosis type 1 (NF1) predisposes to breast cancer (BC), but no genotype-phenotype correlations have been described. METHODS: Constitutional NF1 mutations in 78 patients with NF1 with BC (NF1-BC) were compared with the NF1 Leiden Open Variation Database (n=3432). RESULTS: No cases were observed with whole or partial gene deletions (HR 0.10; 95% CI 0.006 to 1.63; p=0.014, Fisher's exact test). There were no gross relationships with mutation position. Forty-five (64.3%; HR 6.4-83) of the 70 different mutations were more frequent than expected (p<0.05), while 52 (74.3%; HR 5.3-83) were significant when adjusted for multiple comparisons (adjusted p≤0.125; Benjamini-Hochberg). Higher proportions of both nonsense and missense mutations were also observed (adjusted p=0.254; Benjamini-Hochberg). Ten of the 11 missense cases with known age of BC occurred at <50 years (p=0.041). Eighteen cases had BRCA1/2 testing, revealing one BRCA2 mutation. DISCUSSION: These data strongly support the hypothesis that certain constitutional mutation types, and indeed certain specific variants in NF1 confer different risks of BC. The lack of large deletions and excess of nonsenses and missenses is consistent with gain of function mutations conferring risk of BC, and also that neurofibromin may function as a dimer. The observation that somatic NF1 amplification can occur independently of ERBB2 amplification in sporadic BC supports this concept. A prospective clinical-molecular study of NF1-BC needs to be established to confirm and build on these findings, but regardless of NF1 mutation status patients with NF1-BC warrant testing of other BC-predisposing genes.
Assuntos
Neoplasias da Mama/epidemiologia , Neoplasias da Mama/etiologia , Genes da Neurofibromatose 1 , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Neurofibromatose 1/complicações , Neurofibromatose 1/genética , Idade de Início , Alelos , Substituição de Aminoácidos , Feminino , Estudos de Associação Genética/métodos , Genótipo , Humanos , Incidência , Fenótipo , Medição de Risco , Fatores de Risco , Deleção de SequênciaRESUMO
Tatton-Brown-Rahman syndrome (TBRS; OMIM 615879), also known as the DNMT3A-overgrowth syndrome, is an overgrowth intellectual disability syndrome first described in 2014 with a report of 13 individuals with constitutive heterozygous DNMT3A variants. Here we have undertaken a detailed clinical study of 55 individuals with de novoDNMT3A variants, including the 13 previously reported individuals. An intellectual disability and overgrowth were reported in >80% of individuals with TBRS and were designated major clinical associations. Additional frequent clinical associations (reported in 20-80% individuals) included an evolving facial appearance with low-set, heavy, horizontal eyebrows and prominent upper central incisors; joint hypermobility (74%); obesity (weight ³2SD, 67%); hypotonia (54%); behavioural/psychiatric issues (most frequently autistic spectrum disorder, 51%); kyphoscoliosis (33%) and afebrile seizures (22%). One individual was diagnosed with acute myeloid leukaemia in teenage years. Based upon the results from this study, we present our current management for individuals with TBRS.
RESUMO
Tumors carrying hereditary mutations in BRCA1, which attenuate the BRCA1 DNA damage repair pathway, are more susceptible to dual treatment with PARP inhibitors and DNA damaging therapeutics. Conversely, breast cancer tumors with nonmutated functional BRCA1 are less sensitive to PARP inhibition. We describe a method that triggers susceptibility to PARP inhibition in BRCA1-functional tumor cells. BRCA1 exon 11 is a key for the function of BRCA1 in DNA damage repair. Analysis of the BRCA1 exon 11 splicing mechanism identified a key region within this exon which, when deleted, induced exon 11 skipping. An RNA splice-switching oligonucleotide (SSO) developed to target this region was shown to artificially stimulate skipping of exon 11 in endogenous BRCA1 pre-mRNA. SSO transfection rendered wild-type BRCA1 expressing cell lines more susceptible to PARP inhibitor treatment, as demonstrated by a reduction in cell survival at all SSO concentrations tested. Combined SSO and PARP inhibitor treatment increased γH2AX expression indicating that SSO-dependent skipping of BRCA1 exon 11 was able to promote DSBs and therefore synthetic lethality. In conclusion, this SSO provides a new potential therapeutic strategy for targeting BRCA1-functional breast cancer by enhancing the effect of PARP inhibitors.
Assuntos
Processamento Alternativo , Neoplasias da Mama/genética , Genes BRCA1 , Oligonucleotídeos/genética , Inibidores de Poli(ADP-Ribose) Polimerases/química , Apoptose/efeitos dos fármacos , Benzimidazóis/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Éxons , Feminino , Humanos , Células MCF-7 , Mutação , Oligonucleotídeos/química , Poli(ADP-Ribose) Polimerases/metabolismo , Reação em Cadeia da Polimerase , Precursores de RNARESUMO
BACKGROUND: BRCA1 and BRCA2 are the two principal tumour suppressor genes associated with inherited high risk of breast and ovarian cancer. Genetic testing of BRCA1/2 will often reveal one or more sequence variants of uncertain clinical significance, some of which may affect normal splicing patterns and thereby disrupt gene function. mRNA analyses are therefore among the tests used to interpret the clinical significance of some genetic variants. However, these could be confounded by the appearance of naturally occurring alternative transcripts unrelated to germline sequence variation or defects in gene function. To understand which novel splicing events are associated with splicing mutations and which are part of the normal BRCA2 splicing repertoire, a study was undertaken by members of the Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium to characterise the spectrum of naturally occurring BRCA2 mRNA alternate-splicing events. METHODS: mRNA was prepared from several blood and breast tissue-derived cells and cell lines by contributing ENIGMA laboratories. cDNA representing BRCA2 alternate splice sites was amplified and visualised using capillary or agarose gel electrophoresis, followed by sequencing. RESULTS: We demonstrate the existence of 24 different BRCA2 mRNA alternate-splicing events in lymphoblastoid cell lines and both breast cancer and non-cancerous breast cell lines. CONCLUSIONS: These naturally occurring alternate-splicing events contribute to the array of cDNA fragments that may be seen in assays for mutation-associated splicing defects. Caution must be observed in assigning alternate-splicing events to potential splicing mutations.
Assuntos
Processamento Alternativo/genética , Proteína BRCA2/genética , RNA Mensageiro/genética , Proteína BRCA1/genética , Neoplasias da Mama/genética , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Predisposição Genética para Doença/genética , Testes Genéticos/métodos , Humanos , Células MCF-7 , Mutação/genética , Neoplasias Ovarianas/genética , Sítios de Splice de RNA/genéticaRESUMO
A recent analysis using family history weighting and co-observation classification modeling indicated that BRCA1 c.594-2A > C (IVS9-2A > C), previously described to cause exon 10 skipping (a truncating alteration), displays characteristics inconsistent with those of a high risk pathogenic BRCA1 variant. We used large-scale genetic and clinical resources from the ENIGMA, CIMBA and BCAC consortia to assess pathogenicity of c.594-2A > C. The combined odds for causality considering case-control, segregation and breast tumor pathology information was 3.23 × 10-8 Our data indicate that c.594-2A > C is always in cis with c.641A > G. The spliceogenic effect of c.[594-2A > C;641A > G] was characterized using RNA analysis of human samples and splicing minigenes. As expected, c.[594-2A > C; 641A > G] caused exon 10 skipping, albeit not due to c.594-2A > C impairing the acceptor site but rather by c.641A > G modifying exon 10 splicing regulatory element(s). Multiple blood-based RNA assays indicated that the variant allele did not produce detectable levels of full-length transcripts, with a per allele BRCA1 expression profile composed of ≈70-80% truncating transcripts, and ≈20-30% of in-frame Δ9,10 transcripts predicted to encode a BRCA1 protein with tumor suppression function.We confirm that BRCA1c.[594-2A > C;641A > G] should not be considered a high-risk pathogenic variant. Importantly, results from our detailed mRNA analysis suggest that BRCA-associated cancer risk is likely not markedly increased for individuals who carry a truncating variant in BRCA1 exons 9 or 10, or any other BRCA1 allele that permits 20-30% of tumor suppressor function. More generally, our findings highlight the importance of assessing naturally occurring alternative splicing for clinical evaluation of variants in disease-causing genes.
Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Mutação/genética , Neoplasias Ovarianas/genética , Proteínas Supressoras de Tumor/genética , Adulto , Idoso , Processamento Alternativo/genética , Neoplasias da Mama/patologia , Análise Mutacional de DNA , Éxons/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/patologia , Sítios de Splice de RNA/genética , Splicing de RNA/genéticaRESUMO
BACKGROUND: Pallister-Killian syndrome is a rare, sporadic condition caused by mosaic tetrasomy of the short arm of chromosome 12 (12p). The main features are intellectual disability, seizures, dysmorphic features and a variety of congenital malformations. Most available information comes from individual case reports. We report the results of a British study into Pallister-Killian syndrome, which is the first to provide comprehensive data on a population-based sample. METHOD: A detailed phenotypical study was carried out in Great Britain. All individuals with Pallister-Killian syndrome were eligible to participate. Each participant underwent a structured history, developmental assessment and clinical examination. Buccal mucosal samples were analysed by interphase fluorescence in situ hybridization (FISH) and blood samples by array comparative genomic hybridization (CGH). Genotype-phenotype correlations were sought in these tissues and existing skin biopsy reports. RESULTS: Twenty-two patients with Pallister-Killian syndrome, ranging from 4â months to 31â years were recruited and comprehensive data on each obtained. The birth incidence was 5.1 per million live births. Array CGH only suggested the diagnosis in 15.8% but buccal FISH could have made the diagnosis in 75.0%. There was no genotype-phenotype correlation in any of the tissues studied. This study shows that the high birth weights and profound intellectual disability classically described in Pallister-Killian syndrome are not universal. Mild or moderate intellectual disability was present in 27.6% of this cohort and all birth weights were within 2.67SD of the mean. New features which have not previously been recognised as part of Pallister-Killian syndrome include anhydrosis/hypohydrosis and episodic hyperventilation, suggesting involvement of the autonomic system.
Assuntos
Anormalidades Múltiplas/genética , Transtornos Cromossômicos/epidemiologia , Cromossomos Humanos Par 12/genética , Deficiência Intelectual/genética , Fenótipo , Tetrassomia/patologia , Anormalidades Múltiplas/patologia , Transtornos Cromossômicos/genética , Transtornos Cromossômicos/patologia , Hibridização Genômica Comparativa , Humanos , Hibridização in Situ Fluorescente , Deficiência Intelectual/patologia , Mosaicismo , Tetrassomia/genética , Reino Unido/epidemiologiaRESUMO
RBFOX2 (RNA-binding protein, Fox-1 homologue 2)/RBM9 (RNA-binding-motif protein 9)/RTA (repressor of tamoxifen action)/HNRBP2 (hexaribonucleotide-binding protein 2) encodes an RNA-binding protein involved in tissue specific alternative splicing regulation and steroid receptors transcriptional activity. Its ability to regulate specific splicing profiles depending on context has been related to different expression levels of the RBFOX2 protein itself and that of other splicing regulatory proteins involved in the shared modulation of specific genes splicing. However, this cannot be the sole explanation as to why RBFOX2 plays a widespread role in numerous cellular mechanisms from development to cell survival dependent on cell/tissue type. RBFOX2 isoforms with altered protein domains exist. In the present article, we describe the main RBFOX2 protein domains, their importance in the context of splicing and transcriptional regulation and we propose that RBFOX2 isoform distribution may play a fundamental role in RBFOX2-specific cellular effects.
Assuntos
Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Animais , Humanos , Fatores de Processamento de RNA , Proteínas de Ligação a RNA/genética , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Proteínas Repressoras/genéticaRESUMO
Unclassified variants (UV) of BRCA1 can affect normal pre-mRNA splicing. Here, we investigate the UV c.693G>A, a "silent" change in BRCA1 exon 11, which we have found induces aberrant splicing in patient carriers and in vitro. Using a minigene assay, we show that the UV c.693G>A has a strong effect on the splicing isoform ratio of BRCA1. Systematic site-directed mutagenesis of the area surrounding the nucleotide position c.693G>A induced variable changes in the level of exon 11 inclusion/exclusion in the mRNA, pointing to the presence of a complex regulatory element with overlapping enhancer and silencer functions. Accordingly, protein binding analysis in the region detected several splicing regulatory factors involved, including SRSF1, SRSF6 and SRSF9, suggesting that this sequence represents a composite regulatory element of splicing (CERES).
Assuntos
Processamento Alternativo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Sequência de Bases , Éxons , Células HeLa , Humanos , Células MCF-7 , Mutagênese Sítio-Dirigida , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Processamento de Serina-ArgininaRESUMO
BRCA1 exon 11 is one of the biggest human exons, spanning 3426 bases. This gene is potentially involved in DNA repair as well as cell growth and cell cycle control. Exon 11 is regulated at the splicing level producing three main different combinations of BRCA1 mature transcripts; one including the whole of exon 11 (full isoform), one skipping the entire exon (D11 isoform), and one including only 117 base pairs of exon 11 (D11q isoform). Using minigene and deletion analyses, we have previously described important splicing regulatory sequences located at the beginning of this exon (5' end). We have now found additional important sequences located at its 3' end. In particular, we describe the presence of a strong splicing enhancer adjacent to the downstream 5' splice site, which minimizes competition from an upstream 5' splice site and so ensures long exon inclusion. Analyses of the proteins binding these RNA sequences have revealed that Tra2beta and hnRNP L are involved in the regulation of BRCA1 exon 11 by influencing the recognition of donor sites. Interestingly, BRCA1 exon 11 carrying deletion of the regulatory sequences bound by these factors also showed unexpected responses to up- or downregulation of these regulatory proteins, suggesting that they can also bind elsewhere in this large exon and elicit different effects on its recognition. The identification of sequences and proteins relevant for the regulation of BRCA1 exon 11 now provides better knowledge on how this exon is recognized and may represent an important step toward understanding how large exons are regulated.
Assuntos
Éxons , Regulação da Expressão Gênica , Genes BRCA1 , Splicing de RNA , Processamento Alternativo , Linhagem Celular , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/metabolismo , Humanos , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Isoformas de RNA , Sítios de Splice de RNA , Proteínas de Ligação a RNA/metabolismo , Deleção de Sequência , Fatores de Processamento de Serina-ArgininaRESUMO
Overgrowth disorders are a heterogeneous group of conditions characterized by increased growth parameters and other variable clinical features such as intellectual disability and facial dysmorphism. To identify new causes of human overgrowth, we performed exome sequencing in ten proband-parent trios and detected two de novo DNMT3A mutations. We identified 11 additional de novo mutations by sequencing DNMT3A in a further 142 individuals with overgrowth. The mutations alter residues in functional DNMT3A domains, and protein modeling suggests that they interfere with domain-domain interactions and histone binding. Similar mutations were not present in 1,000 UK population controls (13/152 cases versus 0/1,000 controls; P < 0.0001). Mutation carriers had a distinctive facial appearance, intellectual disability and greater height. DNMT3A encodes a DNA methyltransferase essential for establishing methylation during embryogenesis and is commonly somatically mutated in acute myeloid leukemia. Thus, DNMT3A joins an emerging group of epigenetic DNA- and histone-modifying genes associated with both developmental growth disorders and hematological malignancies.