RESUMO
BACKGROUND: Using proteomics, we aimed to reveal molecular types of human atherosclerotic lesions and study their associations with histology, imaging, and cardiovascular outcomes. METHODS: Two hundred nineteen carotid endarterectomy samples were procured from 120 patients. A sequential protein extraction protocol was employed in conjunction with multiplexed, discovery proteomics. To focus on extracellular proteins, parallel reaction monitoring was employed for targeted proteomics. Proteomic signatures were integrated with bulk, single-cell, and spatial RNA-sequencing data, and validated in 200 patients from the Athero-Express Biobank study. RESULTS: This extensive proteomics analysis identified plaque inflammation and calcification signatures, which were inversely correlated and validated using targeted proteomics. The inflammation signature was characterized by the presence of neutrophil-derived proteins, such as S100A8/9 (calprotectin) and myeloperoxidase, whereas the calcification signature included fetuin-A, osteopontin, and gamma-carboxylated proteins. The proteomics data also revealed sex differences in atherosclerosis, with large-aggregating proteoglycans versican and aggrecan being more abundant in females and exhibiting an inverse correlation with estradiol levels. The integration of RNA-sequencing data attributed the inflammation signature predominantly to neutrophils and macrophages, and the calcification and sex signatures to smooth muscle cells, except for certain plasma proteins that were not expressed but retained in plaques, such as fetuin-A. Dimensionality reduction and machine learning techniques were applied to identify 4 distinct plaque phenotypes based on proteomics data. A protein signature of 4 key proteins (calponin, protein C, serpin H1, and versican) predicted future cardiovascular mortality with an area under the curve of 75% and 67.5% in the discovery and validation cohort, respectively, surpassing the prognostic performance of imaging and histology. CONCLUSIONS: Plaque proteomics redefined clinically relevant patient groups with distinct outcomes, identifying subgroups of male and female patients with elevated risk of future cardiovascular events.
Assuntos
Aterosclerose , Calcinose , Feminino , Humanos , Masculino , Proteômica , Caracteres Sexuais , Versicanas , alfa-2-Glicoproteína-HSRESUMO
Medium-sized and large arteries consist of 3 layers: the tunica intima, tunica media, and tunica adventitia. The tunica media accounts for the bulk of the vessel wall and is the chief determinant of mechanical compliance. It is primarily composed of circumferentially arranged layers of vascular smooth muscle cells that are separated by concentrically arranged elastic lamellae; a form of extracellular matrix (ECM). The tunica media is separated from the tunica intima and tunica adventitia, the innermost and outermost layers, respectively, by the internal and external elastic laminae. This second part of a 4-part JACC Focus Seminar discusses the contributions of the ECM to vascular homeostasis and pathology. Advances in genetics and proteomics approaches have fostered significant progress in our understanding of vascular ECM. This review highlights the important role of the ECM in vascular disease and the prospect of translating these discoveries into clinical disease biomarkers and potential future therapies.
Assuntos
Cardiologia/educação , Endotélio Vascular/patologia , Matriz Extracelular/patologia , Músculo Liso Vascular/patologia , Doenças Vasculares/patologia , Animais , Endotélio Vascular/fisiologia , Matriz Extracelular/fisiologia , Humanos , Músculo Liso Vascular/fisiopatologia , Doenças Vasculares/fisiopatologiaRESUMO
OBJECTIVE: Thoracic aortic aneurysm (TAA), a degenerative disease of the aortic wall, is accompanied by changes in the structure and composition of the aortic ECM (extracellular matrix). The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family of proteases has recently been implicated in TAA formation. This study aimed to investigate the contribution of ADAMTS-5 to TAA development. APPROACH AND RESULTS: A model of aortic dilatation by AngII (angiotensin II) infusion was adopted in mice lacking the catalytic domain of ADAMTS-5 (Adamts5Δcat). Adamts5Δcat mice showed an attenuated rise in blood pressure while displaying increased dilatation of the ascending aorta (AsAo). Interestingly, a proteomic comparison of the aortic ECM from AngII-treated wild-type and Adamts5Δcat mice revealed versican as the most upregulated ECM protein in Adamts5Δcat mice. This was accompanied by a marked reduction of ADAMTS-specific versican cleavage products (versikine) and a decrease of LRP1 (low-density lipoprotein-related protein 1). Silencing LRP1 expression in human aortic smooth muscle cells reduced the expression of ADAMTS5, attenuated the generation of versikine, but increased soluble ADAMTS-1. A similar increase in ADAMTS-1 was observed in aortas of AngII-treated Adamts5Δcat mice but was not sufficient to maintain versican processing and prevent aortic dilatation. CONCLUSIONS: Our results support the emerging role of ADAMTS proteases in TAA. ADAMTS-5 rather than ADAMTS-1 is the key protease for versican regulation in murine aortas. Further studies are needed to define the ECM substrates of the different ADAMTS proteases and their contribution to TAA formation.
Assuntos
Proteína ADAMTS5/metabolismo , Aorta Torácica/enzimologia , Aneurisma da Aorta Torácica/enzimologia , Matriz Extracelular/enzimologia , Remodelação Vascular , Proteína ADAMTS1/metabolismo , Proteína ADAMTS5/deficiência , Proteína ADAMTS5/genética , Angiotensina II , Animais , Aorta Torácica/patologia , Aneurisma da Aorta Torácica/induzido quimicamente , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Células Cultivadas , Dilatação Patológica , Modelos Animais de Doenças , Matriz Extracelular/patologia , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Camundongos Knockout , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso , Receptores de LDL/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Versicanas/metabolismoRESUMO
BACKGROUND: Myocardial fibrosis is a feature of many cardiac diseases. We used proteomics to profile glycoproteins in the human cardiac extracellular matrix (ECM). METHODS: Atrial specimens were analyzed by mass spectrometry after extraction of ECM proteins and enrichment for glycoproteins or glycopeptides. RESULTS: ECM-related glycoproteins were identified in left and right atrial appendages from the same patients. Several known glycosylation sites were confirmed. In addition, putative and novel glycosylation sites were detected. On enrichment for glycoproteins, peptides of the small leucine-rich proteoglycan decorin were identified consistently in the flowthrough. Of all ECM proteins identified, decorin was found to be the most fragmented. Within its protein core, 18 different cleavage sites were identified. In contrast, less cleavage was observed for biglycan, the most closely related proteoglycan. Decorin processing differed between human ventricles and atria and was altered in disease. The C-terminus of decorin, important for the interaction with connective tissue growth factor, was detected predominantly in ventricles in comparison with atria. In contrast, atrial appendages from patients in persistent atrial fibrillation had greater levels of full-length decorin but also harbored a cleavage site that was not found in atrial appendages from patients in sinus rhythm. This cleavage site preceded the N-terminal domain of decorin that controls muscle growth by altering the binding capacity for myostatin. Myostatin expression was decreased in atrial appendages of patients with persistent atrial fibrillation and hearts of decorin null mice. A synthetic peptide corresponding to this decorin region dose-dependently inhibited the response to myostatin in cardiomyocytes and in perfused mouse hearts. CONCLUSIONS: This proteomics study is the first to analyze the human cardiac ECM. Novel processed forms of decorin protein core, uncovered in human atrial appendages, can regulate the local bioavailability of antihypertrophic and profibrotic growth factors.
Assuntos
Fibrilação Atrial/metabolismo , Decorina , Miostatina/antagonistas & inibidores , Peptídeos , Animais , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Decorina/química , Decorina/metabolismo , Decorina/farmacologia , Feminino , Células HEK293 , Átrios do Coração/metabolismo , Átrios do Coração/fisiopatologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Mutantes , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miostatina/metabolismo , Peptídeos/síntese química , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , ProteômicaRESUMO
AIMS: Extracellular matrix remodelling has been implicated in a number of vascular conditions, including venous hypertension and varicose veins. However, to date, no systematic analysis of matrix remodelling in human veins has been performed. METHODS AND RESULTS: To understand the consequences of venous hypertension, normal and varicose veins were evaluated using proteomics approaches targeting the extracellular matrix. Varicose saphenous veins removed during phlebectomy and normal saphenous veins obtained during coronary artery bypass surgery were collected for proteomics analysis. Extracellular matrix proteins were enriched from venous tissues. The proteomics analysis revealed the presence of >150 extracellular matrix proteins, of which 48 had not been previously detected in venous tissue. Extracellular matrix remodelling in varicose veins was characterized by a loss of aggrecan and several small leucine-rich proteoglycans and a compensatory increase in collagen I and laminins. Gene expression analysis of the same tissues suggested that the remodelling process associated with venous hypertension predominantly occurs at the protein rather than the transcript level. The loss of aggrecan in varicose veins was paralleled by a reduced expression of aggrecanases. Chymase and tryptase ß1 were among the up-regulated proteases. The effect of these serine proteases on the venous extracellular matrix was further explored by incubating normal saphenous veins with recombinant enzymes. Proteomics analysis revealed extensive extracellular matrix degradation after digestion with tryptase ß1. In comparison, chymase was less potent and degraded predominantly basement membrane-associated proteins. CONCLUSION: The present proteomics study provides unprecedented insights into the expression and degradation of structural and regulatory components of the vascular extracellular matrix in varicosis.
Assuntos
Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Veia Safena/metabolismo , Varizes/metabolismo , Remodelação Vascular , Pressão Venosa , Estudos de Casos e Controles , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Proteólise , Proteômica/métodos , Reprodutibilidade dos Testes , Veia Safena/fisiopatologia , Veia Safena/cirurgia , Espectrometria de Massas em Tandem , Varizes/fisiopatologia , Varizes/cirurgiaRESUMO
RATIONALE: MicroRNAs (miRNAs), in particular miR-29b and miR-30c, have been implicated as important regulators of cardiac fibrosis. OBJECTIVE: To perform a proteomics comparison of miRNA effects on extracellular matrix secretion by cardiac fibroblasts. METHODS AND RESULTS: Mouse cardiac fibroblasts were transfected with pre-/anti-miR of miR-29b and miR-30c, and their conditioned medium was analyzed by mass spectrometry. miR-29b targeted a cadre of proteins involved in fibrosis, including multiple collagens, matrix metalloproteinases, and leukemia inhibitory factor, insulin-like growth factor 1, and pentraxin 3, 3 predicted targets of miR-29b. miR-29b also attenuated the cardiac fibroblast response to transforming growth factor-ß. In contrast, miR-30c had little effect on extracellular matrix production but opposite effects regarding leukemia inhibitory factor and insulin-like growth factor 1. Both miRNAs indirectly affected cardiac myocytes. On transfection with pre-miR-29b, the conditioned medium of cardiac fibroblasts lost its ability to support adhesion of rat ventricular myocytes and led to a significant reduction of cardiac myocyte proteins (α-actinin, cardiac myosin-binding protein C, and cardiac troponin I). Similarly, cardiomyocytes derived from mouse embryonic stem cells atrophied under pre-miR-29 conditioned medium, whereas pre-miR-30c conditioned medium had a prohypertrophic effect. Levels of miR-29a, miR-29c, and miR-30c, but not miR-29b, were significantly reduced in a mouse model of pathological but not physiological hypertrophy. Treatment with antagomiRs to miR-29b induced excess fibrosis after aortic constriction without overt deterioration in cardiac function. CONCLUSIONS: Our proteomic analysis revealed novel molecular targets of miRNAs that are linked to a fibrogenic cardiac phenotype. Such comprehensive screening methods are essential to define the concerted actions of miRNAs in cardiovascular disease.
Assuntos
Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , MicroRNAs/fisiologia , Miocárdio/metabolismo , Proteômica , Animais , Proteína C-Reativa/metabolismo , Células Cultivadas , Colágeno/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibrose , Fator de Crescimento Insulin-Like I/metabolismo , Fator Inibidor de Leucemia/metabolismo , Masculino , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Miocárdio/patologia , Componente Amiloide P Sérico/metabolismo , Fator de Crescimento Transformador beta/farmacologiaRESUMO
Mesenchymal stem cells (MSCs) may be among the first stem cell types to be utilized in the clinic for cell therapy, because of their ease of isolation and extensive differentiation potential. Using a porcine model, we have established several cell lines from MSCs to facilitate in vitro and in vivo studies of their potential use for cellular therapy. Bone marrow-derived primary MSCs were immortalized using the pRNS-1 plasmid. We obtained four stable immortalized cell lines that exhibited higher proliferative capacities than the parental cells. All four cell lines displayed a common phenotype similar to that of primary mesenchymal cells, characterized by constitutively high expressions of CD90, CD29, CD44, SLA I and CD46, while CD172a, CD106 and CD56 were less expressed. Remarkably, treatment with 5-azacytidine-stimulated porcine MSCs lines to differentiate into cells that were positive for cardiac phenotypic markers, such as α-actin, connexin-43, sarcomeric actin, serca-2 and, to a lesser extent, desmin and troponin-T. These porcine MSC lines will be valuable biological tools for developing strategies for ex vivo expansion and differentiation of MSCs into a specific lineage.
Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Miocárdio/citologia , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Azacitidina/farmacologia , Biomarcadores/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Transformada , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Osteócitos/citologia , Osteócitos/efeitos dos fármacos , Osteócitos/metabolismo , Fenótipo , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sus scrofaRESUMO
BACKGROUND AIMS: We evaluated the therapeutic potential of injection of in vitro differentiated bone marrow mesenchymal stromal cells (MSC) using a swine model. METHODS AND RESULTS: Myocardial infarction was induced by coronary occlusion. Three groups (n = 5 each) were analyzed: one group received an injection of 17.8 ± 9.3 × 10(6) 5-azacytidine-treated allogeneic MSC 1 month after infarction; a placebo group received an injection of medium; and controls were kept untreated. After 4 weeks, heart samples were taken from three infarcted areas, interventricular septa, ventricles and atria. Gene expression profiles of genes related to contractility (Serca2a), fibrosis (Col1a1), cardiomyogenesis (Mef2c, Gata4 and Nkx2.5) and mobilization of stem cells (Sdf1, Cxcr4 and c-kit) were compared by quantitative real-time PCR (qRT-PCR). Gene expression profiles varied in different heart areas. Thus Serca2a expression was reduced in infarcted groups in all heart regions except for the left ventricles, where Col1a1 was overexpressed. The expression of genes related to cardiomyogenesis decreased in the infarcted zones and left atria compared with healthy hearts. Interestingly, increased expression of Cxcr4 was detected in infarcted regions of MSC-treated pigs compared with the placebo group. CONCLUSIONS: Infarction induced changes in expression of genes involved in various biologic processes. Genes involved in cardiomyogenesis were downregulated in the left atrium. The intracoronary injection of MSC resulted in localized changes in the expression of Cxcr4.