Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurochem Res ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38862727

RESUMO

Elevated levels of D-2-hydroxyglutarate (D-2HG) and L-2-hydroxyglutarate (L-2HG) in the brain are associated with various pathological conditions, potentially contributing to neurological symptoms and neurodegeneration. Previous studies on animal models have revealed their capability to interfere with several cellular processes, including mitochondrial metabolism. Both enantiomers competitively inhibit the enzymatic activity of 2-oxoglutarate-dependent dioxygenases. These enzymes also execute several signaling cascades and regulate the level of covalent modifications on nucleic acids or proteins, e.g., methylation, hydroxylation, or ubiquitination, with an effect on epigenetic regulation of gene expression, protein stability, and intracellular signaling. To investigate the potential impact of 2HG enantiomers on human neuronal cells, we utilized the SH-SY5Y human neuroblastoma cell line as a model. We employed proton nuclear magnetic resonance (1H-NMR) spectroscopy of culture media that provided high-resolution insights into the changes in the content of metabolites. Concurrently, we performed biochemical assays to complement the 1H-NMR findings and to estimate the activities of lactate and 3-hydroxybutyrate dehydrogenases. Our results reveal that both 2HG enantiomers can influence the cellular metabolism of human neuroblastoma cells on multiple levels. Specifically, both enantiomers of 2HG comparably stimulate anaerobic metabolism of glucose and inhibit the uptake of several essential amino acids from the culture media. In this respect, both 2HG enantiomers decreased the catabolism capability of cells to incorporate the leucine-derived carbon atoms into their metabolism and to generate the ketone bodies. These results provide evidence that both enantiomers of 2HG have the potential to influence the metabolic and molecular aspects of human cells. Furthermore, we may propose that increased levels of 2HG enantiomers in the brain parenchyma may alter brain metabolism features, potentially contributing to the etiology of neurological symptoms in patients.

2.
J Breath Res ; 18(3)2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38701772

RESUMO

The analysis of volatile organic compounds (VOCs) in exhaled air has attracted the interest of the scientific community because it provides the possibility of monitoring physiological and metabolic processes and non-invasive diagnostics of various diseases. However, this method remains underused in clinical practice as well as in research because of the lack of standardized procedures for the collection, storage and transport of breath samples, which would guarantee good reproducibility and comparability of results. The method of sampling, as well as the storage time of the breath samples in the polymer bags used for sample storage and transport, affect the composition and concentration of VOCs present in the breath samples. The aim of our study was to compare breath samples obtained using two methods with fully disposable equipment: a Haldane sampling tube intended for direct breath collection and breath samples exhaled into a transparent Tedlar bag. The second task was to monitor the stability of selected compounds of real breath samples stored in a Tedlar bag for 6 h. Gas chromatography coupled with ion mobility spectrometry (GC-IMS) implemented in the BreathSpec®device was used to analyse exhaled breath. Our results showed a significant difference in the signal intensity of some volatiles when taking a breath sample with a Haldane tube and a Tedlar bag. Due to its endogenous origin, acetone levels were significantly higher when the Haldane tube sampler was used while elevated levels of 2-propanol and unidentified VOC (designated as VOC 3) in the Tedlar bag samples likely originated from contamination of the Tedlar bags. The VOC stability study revealed compound-specific signal intensity changes of the selected VOCs with storage time in the Tedlar bags, with some volatiles showing increasing signal intensity during storage in Tedlar bags. This limits the use of Tedlar bags only for very limited time and carefully selected purpose. Our results highlight the importance of careful design and implementation of experiments and clinical protocols to obtain relevant and reliable results.


Assuntos
Testes Respiratórios , Manejo de Espécimes , Compostos Orgânicos Voláteis , Humanos , Testes Respiratórios/instrumentação , Testes Respiratórios/métodos , Compostos Orgânicos Voláteis/análise , Manejo de Espécimes/instrumentação , Manejo de Espécimes/métodos , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Mobilidade Iônica/instrumentação , Masculino , Feminino , Reprodutibilidade dos Testes , Adulto , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Expiração , Pessoa de Meia-Idade , Fatores de Tempo
3.
Front Pharmacol ; 15: 1216199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464730

RESUMO

Introduction: Based on extensive data from oncology research, the use of phytochemicals or plant-based nutraceuticals is considered an innovative tool for cancer management. This research aimed to analyze the oncostatic properties of Salvia officinalis L. [Lamiaceae; Salviae officinalis herba] using animal and in vitro models of breast carcinoma (BC). Methods: The effects of dietary administered S. officinalis in two concentrations (0.1%/SAL 0.1/and 1%/SAL 1/) were assessed in both syngeneic 4T1 mouse and chemically induced rat models of BC. The histopathological and molecular evaluations of rodent carcinoma specimens were performed after the autopsy. Besides, numerous in vitro analyses using two human cancer cell lines were performed. Results and Conclusion: The dominant metabolites found in S. officinalis propylene glycol extract (SPGE) were representatives of phenolics, specifically rosmarinic, protocatechuic, and salicylic acids. Furthermore, the occurrence of triterpenoids ursolic and oleanolic acid was proved in SPGE. In a mouse model, a non-significant tumor volume decrease after S. officinalis treatment was associated with a significant reduction in the mitotic activity index of 4T1 tumors by 37.5% (SAL 0.1) and 31.5% (SAL 1) vs. controls (set as a blank group with not applied salvia in the diet). In addition, salvia at higher doses significantly decreased necrosis/whole tumor area ratio by 46% when compared to control tumor samples. In a rat chemoprevention study, S. officinalis at a higher dose significantly lengthened the latency of tumors by 8.5 days and significantly improved the high/low-grade carcinomas ratio vs. controls in both doses. Analyses of the mechanisms of anticancer activities of S. officinalis included well-validated prognostic, predictive, and diagnostic biomarkers that are applied in both oncology practice and preclinical investigation. Our assessment in vivo revealed numerous significant changes after a comparison of treated vs. untreated cancer cells. In this regard, we found an overexpression in caspase-3, an increased Bax/Bcl-2 ratio, and a decrease in MDA, ALDH1, and EpCam expression. In addition, salvia reduced TGF-ß serum levels in rats (decrease in IL-6 and TNF-α levels were with borderline significance). Evaluation of epigenetic modifications in rat cancer specimens in vivo revealed a decline in the lysine methylations of H3K4m3 and an increase in lysine acetylation in H4K16ac levels in treated groups. Salvia decreased the relative levels of oncogenic miR21 and tumor-suppressive miR145 (miR210, miR22, miR34a, and miR155 were not significantly altered). The methylation of ATM and PTEN promoters was decreased after S. officinalis treatment (PITX2, RASSF1, and TIMP3 promoters were not altered). Analyzing plasma metabolomics profile in tumor-bearing rats, we found reduced levels of ketoacids derived from BCAAs after salvia treatment. In vitro analyses revealed significant anti-cancer effects of SPGE extract in MCF-7 and MDA-MB-231 cell lines (cytotoxicity, caspase-3/-7, Bcl-2, Annexin V/PI, cell cycle, BrdU, and mitochondrial membrane potential). Our study demonstrates the significant chemopreventive and treatment effects of salvia haulm using animal or in vitro BC models.

4.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473877

RESUMO

Metastatic castration-resistant prostate cancer (mCRPC) remains a lethal disease due to the absence of effective therapies. A more comprehensive understanding of molecular events, encompassing the dysregulation of microRNAs (miRs) and metabolic reprogramming, holds the potential to unveil precise mechanisms underlying mCRPC. This study aims to assess the expression of selected serum exosomal miRs (miR-15a, miR-16, miR-19a-3p, miR-21, and miR-141a-3p) alongside serum metabolomic profiling and their correlation in patients with mCRPC and benign prostate hyperplasia (BPH). Blood serum samples from mCRPC patients (n = 51) and BPH patients (n = 48) underwent metabolome analysis through 1H-NMR spectroscopy. The expression levels of serum exosomal miRs in mCRPC and BPH patients were evaluated using a quantitative real-time polymerase chain reaction (qRT-PCR). The 1H-NMR metabolomics analysis revealed significant alterations in lactate, acetate, citrate, 3-hydroxybutyrate, and branched-chain amino acids (BCAAs, including valine, leucine, and isoleucine) in mCRPC patients compared to BPH patients. MiR-15a, miR-16, miR-19a-3p, and miR-21 exhibited a downregulation of more than twofold in the mCRPC group. Significant correlations were predominantly observed between lactate, citrate, acetate, and miR-15a, miR-16, miR-19a-3p, and miR-21. The importance of integrating metabolome analysis of serum with selected serum exosomal miRs in mCRPC patients has been confirmed, suggesting their potential utility for distinguishing of mCRPC from BPH.


Assuntos
MicroRNAs , Hiperplasia Prostática , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , MicroRNAs/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Soro/metabolismo , Citratos , Lactatos , Acetatos
5.
Neurochem Int ; 176: 105726, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38556052

RESUMO

We investigated the influence of the so-called bystander effect on metabolic and histopathological changes in the rat brain after fractionated spinal cord irradiation. The study was initiated with adult Wistar male rats (n = 20) at the age of 9 months. The group designated to irradiation (n = 10) and the age-matched control animals (n = 10) were subjected to an initial measurement using in vivo proton magnetic resonance spectroscopy (1H MRS) and magnetic resonance imaging (MRI). After allowing the animals to survive until 12 months, they received fractionated spinal cord irradiation with a total dose of 24 Gy administered in 3 fractions (8 Gy per fraction) once a week on the same day for 3 consecutive weeks. 1H MRS and MRI of brain metabolites were performed in the hippocampus, corpus striatum, and olfactory bulb (OB) before irradiation (9-month-old rats) and subsequently 48 h (12-month-old) and 2 months (14-month-old) after the completion of irradiation. After the animals were sacrificed at the age of 14 months, brain tissue changes were investigated in two neurogenic regions: the hippocampal dentate gyrus (DG) and the rostral migratory stream (RMS). By comparing the group of 9-month-old rats and individuals measured 48 h (at the age of 12 months) after irradiation, we found a significant decrease in the ratio of total N-acetyl aspartate to total creatine (tNAA/tCr) and gamma-aminobutyric acid to tCr (GABA/tCr) in OB and hippocampus. A significant increase in myoinositol to tCr (mIns/tCr) in the OB persisted up to 14 months of age. Proton nuclear magnetic resonance (1H NMR)-based plasma metabolomics showed a significant increase in keto acids and decreased tyrosine and tricarboxylic cycle enzymes. Morphometric analysis of neurogenic regions of 14-month-old rats showed well-preserved stem cells, neuroblasts, and increased neurodegeneration. The radiation-induced bystander effect more significantly affected metabolite concentration than the distribution of selected cell types.


Assuntos
Envelhecimento , Encéfalo , Efeito Espectador , Ratos Wistar , Medula Espinal , Animais , Masculino , Ratos , Envelhecimento/efeitos da radiação , Envelhecimento/metabolismo , Envelhecimento/patologia , Encéfalo/efeitos da radiação , Encéfalo/metabolismo , Efeito Espectador/efeitos da radiação , Medula Espinal/efeitos da radiação , Medula Espinal/metabolismo , Medula Espinal/patologia , Imageamento por Ressonância Magnética , Fracionamento da Dose de Radiação
6.
Adv Med Sci ; 69(1): 198-207, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38555007

RESUMO

We present the results of an association study involving hospitalized coronavirus disease 2019 (COVID-19) patients with a clinical background during the 3rd pandemic wave of COVID-19 in Slovakia. Seventeen single nucleotide variants (SNVs) in the eleven most relevant genes, according to the COVID-19 Host Genetics Initiative, were investigated. Our study confirms the validity of the influence of LZTFL1 and 2'-5'-oligoadenylate synthetase (OAS)1/OAS3 genetic variants on the severity of COVID-19. For two LZTFL1 SNVs in complete linkage disequilibrium, rs17713054 and rs73064425, the odds ratios of baseline allelic associations and logistic regressions (LR) adjusted for age and sex ranged in the four tested designs from 2.04 to 2.41 and from 2.05 to 3.98, respectively. The OAS1/OAS3 haplotype 'gttg' carrying a functional allele G of splice-acceptor variant rs10774671 manifested its protective function in the Delta pandemic wave. Significant baseline allelic associations of two DPP9 variants in all tested designs and two IFNAR2 variants in the Omicron pandemic wave were not confirmed by adjusted LR. Nevertheless, adjusted LR showed significant associations of NOTCH4 rs3131294 and TYK2 rs2304256 variants with severity of COVID-19. Hospitalized patients' reported comorbidities were not correlated with genetic variants, except for obesity, smoking (IFNAR2), and hypertension (NOTCH4). The results of our study suggest that host genetic variations have an impact on the severity and duration of acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Considering the differences in allelic associations between pandemic waves, they support the hypothesis that every new SARS-CoV-2 variant may modify the host immune response by reconfiguring involved pathways.


Assuntos
COVID-19 , Polimorfismo de Nucleotídeo Único , SARS-CoV-2 , Humanos , COVID-19/genética , COVID-19/epidemiologia , COVID-19/virologia , Eslováquia/epidemiologia , Feminino , Masculino , SARS-CoV-2/genética , Pessoa de Meia-Idade , Idoso , Estudos de Coortes , Adulto , Predisposição Genética para Doença , 2',5'-Oligoadenilato Sintetase/genética
7.
Mol Cell Probes ; 66: 101862, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36162596

RESUMO

It was documented that the presence of malignancy in an organism causes metabolomic alterations in blood plasma which applies also to breast cancer. Breast cancer is a heterogeneous disease and there are only limited known relations of plasma metabolomic signatures with the tumour characteristics in early BC and knowing them would be of great advantage in noninvasive diagnostics. In this study, we focused on the metabolic alterations in early BC in blood plasma with the aim to identify metabolomic characteristics of BC subtypes. We used 50 early BC patients (FIGO stage I and II), where no additional metabolomic changes from metastatically changed remote organs were to be expected. We compared plasma levels of metabolites against controls and among various molecular and histological BC subtypes. BC patients showed decreased plasma levels of branched-chain amino acids BCAAs (and related keto-acids), histidine pyruvate and alanine balanced with an increased level of 3-hydroxybutyrate. The levels of circulating metabolites were not related to BC molecular subtypes (luminal A/luminal B), histological finding or grade, eventually stage, which indicate that in early BC, the BC patients share common metabolomics fingerprint in blood plasma independent of grade, stage or molecular subtype of BC. We observed statistically significant correlations between tumour proliferation marker Ki-67 level and circulating metabolites: alanine, citrate, tyrosine, glutamine, histidine and proline. This may point out the metabolites those levels could be associated with tumour growth, and conversely, the rate of tumour proliferation could be potentially estimated from plasma metabolites. When analyzing metabolomic changes in BC, we concluded that some of them could be associated with the metabolomic features of cancer cells, but the other observed alterations in blood plasma are the results of the complex mutual biochemical pathways in the comprehensive inter-organ metabolic exchange and communication. In the end, statistical discrimination against controls performed with AUC >0.91 showed the very promising potential of plasma metabolomics in the search for biomarkers for oncologic diseases.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Antígeno Ki-67 , Neoplasias da Mama/metabolismo , Histidina , Metabolômica/métodos , Alanina , Biomarcadores Tumorais
8.
Metabolites ; 12(7)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35888785

RESUMO

End-stage kidney disease is preferably treated by kidney transplantation. The suboptimal function of the allograft often results in misbalances in kidney-controlled processes and requires long-term monitoring of allograft function and viability. As the kidneys are organs with a very high metabolomic rate, a metabolomics approach is suitable to describe systematic changes in post-transplant patients and has great potential for monitoring allograft function, which has not been described yet. In this study, we used blood plasma samples from 55 patients after primary kidney transplantation identically treated with immunosuppressants with follow-up 50 months in the mean after surgery and evaluated relative levels of basal plasma metabolites detectable by NMR spectroscopy. We were looking for the correlations between circulating metabolites levels and allograft performance and allograft rejection features. Our results imply a quantitative relationship between restricted renal function, insufficient hydroxylation of phenylalanine to tyrosine, lowered renal glutamine utilization, shifted nitrogen balance, and other alterations that are not related exclusively to the metabolism of the kidney. No link between allograft function and energy metabolism can be concluded, as no changes were found for glucose, glycolytic intermediates, and 3-hydroxybutyrate as a ketone body representative. The observed changes are to be seen as a superposition of changes in the comprehensive inter-organ metabolic exchange, when the restricted function of one organ may induce compensatory effects or cause secondary alterations. Particular differences in plasma metabolite levels in patients with acute cellular and antibody-mediated allograft rejection were considered rather to be related to the loss of kidney function than to the molecular mechanism of graft rejection since they largely follow the alterations observed by restricted allograft function. In the end, we showed using a simple mathematical model, multilinear regression, that the basal plasmatic metabolites correlated with allograft function expressed by the level of glomerular filtration rate (with creatinine: p-value = 4.0 × 10-26 and r = 0.94, without creatinine: p-value = 3.2 × 10-22 and r = 0.91) make the noninvasive estimation of the allograft function feasible.

9.
Cancers (Basel) ; 14(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35158853

RESUMO

Leucine is an essential, ketogenic amino acid with proteinogenic, metabolic, and signaling roles. It is readily imported from the bloodstream into the brain parenchyma. Therefore, it could serve as a putative substrate that is complementing glucose for sustaining the metabolic needs of brain tumor cells. Here, we investigated the ability of cultured human cancer cells to metabolize leucine. Indeed, cancer cells dispose of leucine from their environment and enrich their media with the metabolite 2-oxoisocaproate. The enrichment of the culture media with a high level of leucine stimulated the production of 3-hydroxybutyrate. When 13C6-leucine was offered, it led to an increased appearance of the heavier citrate isotope with a molar mass greater by two units in the culture media. The expression of 3-methylcrotonyl-CoA carboxylase (MCC), an enzyme characteristic for the irreversible part of the leucine catabolic pathway, was detected in cultured cancer cells and human tumor samples by immunoprobing methods. Our results demonstrate that these cancer cells can catabolize leucine and furnish its carbon atoms into the tricarboxylic acid (TCA) cycle. Furthermore, the release of 3-hydroxybutyrate and citrate by cancer cells suggests their capability to exchange these metabolites with their milieu and the capability to participate in their metabolism. This indicates that leucine could be an additional substrate for cancer cell metabolism in the brain parenchyma. In this way, leucine could potentially contribute to the synthesis of metabolites such as lipids, which require the withdrawal of citrate from the TCA cycle.

10.
Gen Physiol Biophys ; 40(2): 127-135, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33880999

RESUMO

Pyruvate carboxylase (PC) is an enzyme catalyzing the conversion of pyruvate to oxaloacetate, which possesses anaplerotic role in cellular metabolism. The expression of PC was confirmed in cells of several cancer types, in which it ensures several cellular functions, such as growth and division. To investigate the expression of PC in human astrocytoma, glioblastoma and neuroblastoma cells we applied the immunodetection methods. The results of the Western blot analysis and immunocytochemical detection revealed the presence of PC in human astrocytoma, glioblastoma and neuroblastoma cells. Furthermore, application of PC inhibitor, 3-chloro-1,2-dihydroxypropane (CDP), negatively impacts the viability of astrocytoma cells. The cytotoxic effect of CDP could be partially reversed by application of citrate, 2-oxoglutarate and malate in incubation media. Our results revealed that astrocytoma, glioblastoma and neuroblastoma cells are equipped with PC, which might significantly contribute by its anaplerotic activity to sustain the metabolism of cancer cells.


Assuntos
Astrocitoma , Glioblastoma , Neuroblastoma , Humanos , Piruvato Carboxilase , Ácido Pirúvico
11.
Neoplasma ; 68(4): 852-860, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33904314

RESUMO

Targeting metabolomic pathways is a promising strategy for cancer treatment. Alterations in the metabolomic state have also an epigenetic impact, making the metabolomic studies even more interesting. We explored metabolomic changes in the blood plasma of patients with primary and secondary lung cancer and tried to explore their origin. We also applied a discrimination algorithm to the data. In the study, blood samples from 132 patients with primary lung cancer, 47 with secondary lung cancer, and 77 subjectively healthy subjects without any cancer history were used. The samples were measured by NMR spectroscopy. PCA and PLS-DA analyses did not distinguish between patients with primary and secondary lung tumors. Accordingly, no significantly changed levels of plasmatic metabolites were found between these groups. When comparing with healthy controls, significantly increased glucose, citrate, acetate, 3-hydroxybutyrate, and creatinine balanced with decreased pyruvate, lactate, alanine, tyrosine, and tryptophan were found as a common feature of both groups. Metabolomic analysis of blood plasma showed considerable proximity of patients with primary and secondary lung cancer. The changes observed can be partially explained as cancer-derived and also as changes showing ischemic nature. Random Forrest discrimination based on the relative concentration of metabolites in blood plasma performed very promising with AUC of 0.95 against controls; however noticeable parts of differencing metabolites are overlapping with those observed after ischemic injury in other studies.


Assuntos
Neoplasias Pulmonares , Metabolômica , Humanos , Pulmão , Espectroscopia de Ressonância Magnética , Plasma
12.
Neurochem Int ; 145: 104985, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33582163

RESUMO

In the present study, we investigated the correlation between histopathological, metabolic, and volumetric changes in the brain and plasma under experimental conditions. Adult male Wistar rats received fractionated whole-brain irradiation (fWBI) with a total dose of 32 Gy delivered in 4 fractions (dose 8 Gy per fraction) once a week on the same day for 4 consecutive weeks. Proton magnetic resonance spectroscopy (1H MRS) and imaging were used to detect metabolic and volumetric changes in the brain and plasma. Histopathological changes in the brain were determined by image analysis of immunofluorescent stained sections. Metabolic changes in the brain measured by 1H MRS before, 48 h, and 9 weeks after the end of fWBI showed a significant decrease in the ratio of total N-acetylaspartate to total creatine (tNAA/tCr) in the corpus striatum. We found a significant decrease in glutamine + glutamate/tCr (Glx/tCr) and, conversely, an increase in gamma-aminobutyric acid to tCr (GABA/tCr) in olfactory bulb (OB). The ratio of astrocyte marker myoinositol/tCr (mIns/tCr) significantly increased in almost all evaluated areas. Magnetic resonance imaging (MRI)-based brain volumetry showed a significant increase in volume, and a concomitant increase in the T2 relaxation time of the hippocampus. Proton nuclear magnetic resonance (1H NMR) plasma metabolomics displayed a significant decrease in the level of glucose and glycolytic intermediates and an increase in ketone bodies. The histomorphological analysis showed a decrease to elimination of neuroblasts, increased astrocyte proliferation, and a mild microglia response. The results of the study clearly reflect early subacute changes 9-11 weeks after fWBI with strong manifestations of brain edema, astrogliosis, and ongoing ketosis.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Fracionamento da Dose de Radiação , Metabolismo Energético/fisiologia , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Encéfalo/patologia , Encéfalo/efeitos da radiação , Metabolismo Energético/efeitos da radiação , Imageamento por Ressonância Magnética/métodos , Masculino , Tamanho do Órgão/fisiologia , Tamanho do Órgão/efeitos da radiação , Espectroscopia de Prótons por Ressonância Magnética/métodos , Ratos , Ratos Wistar
13.
IUBMB Life ; 72(9): 2010-2023, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32663378

RESUMO

Cardiac arrest is one of the major causes of death and disability. The aim of the study was to identify dynamic time-dependent metabolomic changes reflected in rat plasma induced by cerebral ischemia and reperfusion with the focus on the protective effect of ischemic preconditionig. Global cerebral ischemia in rats was induced by the four-vessel occlusion. Blood plasma was collected in three reperfusion times: an early post-acute 3 hr, then 24 hr, as an incipient time for delayed neuronal death induction and 72 hr as prolonged reperfusion period. The metabolomic measurements were conducted via untargeted nuclear magnetic resonance spectroscopy. Plasma of ischemized rats manifested dynamic metabolomic changes over the reperfusion time, such as increased levels of ketone bodies, decreased levels of pyruvate, alanine, and citrate. All three branched chain amino acids showed common pattern during reperfusion time: a decrease in 3 hr compared to sham, then a highest level in 24 hr and decrease in 72 hr reperfusion time, similar to their corresponding ketoacids. The protective effect of ischemic preconditioning was demonstrated by a faster tendency of plasma metabolites to normalize. Results also proved the remarkable metabolomic differences between the control (naïve) and sham-operated anesthetized animals, what warrants for critical evaluation of surgery/anaesthesy in the algorithm of metabolomic animal studies.


Assuntos
Isquemia Encefálica/patologia , Precondicionamento Isquêmico/métodos , Metaboloma , Plasma/metabolismo , Traumatismo por Reperfusão/patologia , Animais , Isquemia Encefálica/metabolismo , Masculino , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Fatores de Tempo
14.
IUBMB Life ; 71(12): 1994-2002, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31419008

RESUMO

The brain tumours represent a complex tissue that has its own characteristic metabolic features and is interfaced with the whole organism. We investigated changes in basal blood plasma metabolites in the presence of primary brain tumour, their correlation with tumour grade, as well as the feasibility of statistical discrimination based on plasma metabolites. Together 60 plasma samples from patients with clinically defined glioblastoma, meningioma, oligodendrioglioma, astrocytoma, and non-specific glial tumour and plasma samples from 28 healthy volunteers without any cancer history were measured by NMR spectroscopy. In blood plasma of primary brain tumour patients, we found significantly increased levels of glycolytic metabolites glucose and pyruvate, and significantly decreased level of glutamine and also metabolites participating in tricarboxylic acid (TCA) cycle, citrate and succinate, when compared with controls. Further, plasma metabolites levels: tyrosine, phenylalanine, glucose, creatine and creatinine correlated significantly with tumour grade. In general, observed changes are parallel to the biochemistry expected for tumourous tissue and metabolic changes in plasma seem to follow the similar rules in all primary brain tumours, with very subtle variations among tumour types. Only two plasma metabolites tyrosine and phenylalanine were increased exclusively in blood plasma of patients with glioblastoma. Based on metabolite levels, an excellent discrimination between plasma from patient's tumours and controls was attainable. The metabolites creatine, pyruvate, glucose, formate, creatinine and citrate were of the highest discriminatory power.


Assuntos
Sangue/metabolismo , Neoplasias Encefálicas/sangue , Adolescente , Adulto , Idoso , Área Sob a Curva , Astrocitoma/sangue , Astrocitoma/patologia , Biomarcadores Tumorais/sangue , Neoplasias Encefálicas/patologia , Estudos de Casos e Controles , Feminino , Glioblastoma/sangue , Glioblastoma/patologia , Voluntários Saudáveis , Humanos , Análise dos Mínimos Quadrados , Espectroscopia de Ressonância Magnética/estatística & dados numéricos , Masculino , Meningioma/sangue , Meningioma/patologia , Pessoa de Meia-Idade , Oligodendroglioma/sangue , Oligodendroglioma/patologia , Adulto Jovem
15.
J Biomed Res ; 31(4): 301-305, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28808201

RESUMO

Iron can contribute to the pathogenesis and progression of multiple sclerosis (MS) due to its accumulation in the human brain. We focus on the thalamus as an information transmitter between various subcortical and cortical areas. Thalamic iron seems to follow different rules than iron in other deep gray matter structures and its relation to the clinical outcomes of MS is still indistinct. In our study, we investigated a connection between thalamic iron and patients' disability and course of the disease. The presence of paramagnetic substances in the tissues was tracked by T2* quantification. Twenty-eight subjects with definite MS and 15 age-matched healthy controls underwent MRI examination with a focus on gradient echo sequence. We observed a non-monotonous course of T2* values with age in healthy controls. Furthermore, T2* distribution in MS patients was significantly wider than that of age matched healthy volunteers (P<0.001). A strong significant correlation was demonstrated between T2* distribution spread and the expanded disability status scale (EDSS) (left thalamus:P<0.00005; right thalamus: P<0.005), and multiple sclerosis severity scale (MSSS) (left thalamus: P<0.05; right thalamus: P<0.005). The paramagnetic iron distribution in the thalamus in MS was not uniform and this inhomogeneity may be considered as an indicator of thalamic neurodegeneration in MS.

16.
BMC Cancer ; 17(1): 424, 2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28629398

RESUMO

BACKGROUND: Co-occurrence of multiple sclerosis (MS) and glial tumours (GT) is uncommon although occasionally reported in medical literature. Interpreting the overlapping radiologic and clinical characteristics of glial tumours, MS lesions, and progressive multifocal leukoencephalopathy (PML) can be a significant diagnostic challenge. CASE PRESENTATION: We report a case of anaplastic astrocytoma mimicking PML in a 27-year-old patient with a 15-year history of MS. She was treated with interferon, natalizumab and finally fingolimod due to active MS. Follow-up MRI, blood and cerebrospinal fluid examinations, and biopsy were conducted, but only the latter was able to reveal the cause of progressive worsening of patient's disease. CONCLUSIONS: Anaplastic astrocytoma misdiagnosed as PML has not yet been described. We suppose that the astrocytoma could have evolved from a low grade glioma to anaplastic astrocytoma over time, as the tumour developed adjacent to typical MS plaques. The role of the immunomodulatory treatment as well as other immunological factors in the malignant transformation can only be hypothesised. We discuss clinical, laboratory and diagnostic aspects of a malignant GT, MS lesions and PML. The diagnosis of malignant GT must be kept in mind when an atypical lesion develops in a patient with MS.


Assuntos
Astrocitoma/diagnóstico , Leucoencefalopatia Multifocal Progressiva/diagnóstico , Adulto , Astrocitoma/metabolismo , Biomarcadores , Encéfalo/metabolismo , Encéfalo/patologia , Diagnóstico Diferencial , Feminino , Humanos , Imuno-Histoquímica , Leucoencefalopatia Multifocal Progressiva/metabolismo , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Tomografia por Emissão de Pósitrons , Avaliação de Sintomas
17.
Gen Physiol Biophys ; 36(5): 531-537, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29372686

RESUMO

In this study we evaluated clinical feasibility of proton magnetic resonance spectroscopy metabolite mapping (1H MRSI) by using 1.5 Tesla MR-scanner in 10 patients with high-grade glioblastoma. In vivo 1H MRSI performed with a relatively short scan time of 20 minutes enabled to obtain comprehensive information about metabolic changes in glioblastoma and adjacent tissues namely in the peritumoral edema, in the middle and solid part of the tumor, and in the normal-appearing brain tissue. Spectroscopically it was possible to identify initiation of neuronal cell death in the solid tumorous tissue via decreased N-acetyl-aspartate to creatine ratio (↓ tNAA/tCr) and expanding carcinogenesis reflected in elevated choline ratios (↑ tCho/tCr and tCho/tNAA). We showed also the central necrosis of glioblastoma accompanied by the tissue hypoxia, which were apparent as increased lactate and lipids ratios (↑ Lac/tCr and lip/Lac). Metabolic changes were noticeable also in the peritumoral area, showing the glioblastoma infiltration into the surrounding tissues. In intracranial tumors, 1H MRSI performed on 1.5 Tesla field strength was sufficient to provide information about the stage of carcinogenesis, tumor expansion or necrotization and thus it could be considered as a useful diagnostic tool in oncology.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Encefálicas/química , Neoplasias Encefálicas/diagnóstico , Glioblastoma/química , Glioblastoma/diagnóstico , Espectroscopia de Prótons por Ressonância Magnética/métodos , Estudos de Viabilidade , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Imagem Molecular/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA