Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Life Sci ; 287: 120092, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34715142

RESUMO

AIMS: Transforming growth factor-ß (TGF-ß) mediates fibrotic manifestations of diabetic nephropathy. We demonstrated proteasomal degradation of anti-fibrotic protein, nuclear factor-erythroid derived 2 (NF-E2), in TGF-ß treated human renal proximal tubule (HK-11) cells and in diabetic mouse kidneys. The current study examined the role of mitogen-activated protein kinase (MAPK) pathways in mediating NF-E2 proteasomal degradation and stimulating profibrotic signaling in HK-11 cells. MAIN METHODS: HK-11 cells were pretreated with vehicle or appropriate proteasome and MAPK inhibitors, MG132 (0.5 µM), SB203580 (1 µM), PD98059 (25 µM) and SP600125 (10 µM), respectively, followed by treatment with/without TGF-ß (10 ng/ml, 24 h). Cell lysates and kidney homogenates from FVB and OVE26 mice treated with/without MG132 were immunoblotted with appropriate antibodies. pUse vector and pUse-NF-E2 cDNA were transfected in HK-11 cells and effects of TGF-ß on JNK MAPK phosphorylation (pJNK) was examined. KEY FINDINGS: We demonstrated activation of p38, ERK, and JNK MAPK pathways in TGF-ß treated HK-11 cells. Dual p38 and ERK MAPK blockade prevented TGF-ß-induced pSer82Hsp27, fibronectin and connective tissue growth factor (CTGF) expression while preserving NF-E2 expression. Blockade of JNK MAPK inhibited TGF-ß-induced CTGF expression without preserving NF-E2 expression. MG132 treatment prevented TGF-ß-induced pJNK in HK-11 cells and in type 1 diabetic OVE26 mouse kidneys, demonstrating that TGF-ß- and diabetes-induced pJNK occurs downstream of proteasome activation. A direct role for NF-E2 in modulating pJNK activation was demonstrated by NF-E2 over-expression. SIGNIFICANCE: ERK and p38 MAPK promotes NF-E2 proteasomal degradation while proteasome activation promotes pJNK and profibrotic signaling in renal proximal tubule cells.


Assuntos
Túbulos Renais Proximais/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Subunidade p45 do Fator de Transcrição NF-E2/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Antracenos/farmacologia , Linhagem Celular Transformada , Inibidores de Cisteína Proteinase/farmacologia , Feminino , Fibrose , Humanos , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/patologia , Leupeptinas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Transgênicos
2.
Antioxidants (Basel) ; 10(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203453

RESUMO

(1) Background: One third of patients who receive cisplatin develop an acute kidney injury. We previously demonstrated the Na/H Exchange Regulatory Factor 1 (NHERF1) loss resulted in increased kidney enzyme activity of the pentose phosphate pathway and was associated with more severe cisplatin nephrotoxicity. We hypothesized that changes in proximal tubule biochemical pathways associated with NHERF1 loss alters renal metabolism of cisplatin or response to cisplatin, resulting in exacerbated nephrotoxicity. (2) Methods: 2-4 month-old male wild-type and NHERF1 knock out littermate mice were treated with either vehicle or cisplatin (20 mg/kg dose IP), with samples taken at either 4, 24, or 72 h. Kidney injury was determined by urinary neutrophil gelatinase-associated lipocalin and histology. Glutathione metabolites were measured by HPLC and genes involved in glutathione synthesis were measured by qPCR. Kidney handling of cisplatin was assessed by a kidney cortex measurement of γ-glutamyl transferase activity, Western blot for γ-glutamyl transferase and cysteine S-conjugate beta lyase, and ICP-MS for platinum content. (3) Results: At 24 h knock out kidneys show evidence of greater tubular injury after cisplatin and exhibit a decreased reduced/oxidized glutathione ratio under baseline conditions in comparison to wild-type. KO kidneys fail to show an increase in γ-glutamyl transferase activity and experience a more rapid decline in tissue platinum when compared to wild-type. (4) Conclusions: Knock out kidneys show evidence of greater oxidative stress than wild-type accompanied by a greater degree of early injury in response to cisplatin. NHERF1 loss has no effect on the initial accumulation of cisplatin in the kidney cortex but is associated with an altered redox status which may alter the activity of enzymes involved in cisplatin metabolism.

3.
J Clin Med ; 10(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669337

RESUMO

Kidney involvement in systemic lupus erythematosus (SLE)-termed lupus nephritis (LN)-is a severe manifestation of SLE that can lead to end-stage kidney disease (ESKD). LN is characterized by immune complex deposition and inflammation in the glomerulus. We tested the hypothesis that autoantibodies targeting podocyte and glomerular cell proteins contribute to the development of immune complex formation in LN. We used Western blotting with SLE sera from patients with and without LN to identify target antigens in human glomerular and cultured human-derived podocyte membrane proteins. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified the proteins in the gel regions corresponding to reactive bands observed with sera from LN patients. We identified 102 proteins that were present in both the podocyte and glomerular samples. We identified 10 high-probability candidates, including moesin, using bioinformatic analysis. Confirmation of moesin as a target antigen was conducted using immunohistochemical analysis (IHC) of kidney biopsy tissue and enzyme-linked immunosorbent assay (ELISA) to detect circulating antibodies. By IHC, biopsies from patients with proliferative lupus nephritis (PLN, class III/IV) demonstrated significantly increased glomerular expression of moesin (p < 0.01). By ELISA, patients with proliferative LN demonstrated significantly increased antibodies against moesin (p < 0.01). This suggests that moesin is a target glomerular antigen in lupus nephritis.

4.
J Am Soc Nephrol ; 31(8): 1883-1904, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32561683

RESUMO

BACKGROUND: The mechanisms leading to extracellular matrix (ECM) replacement of areas of glomerular capillaries in histologic variants of FSGS are unknown. This study used proteomics to test the hypothesis that glomerular ECM composition in collapsing FSGS (cFSGS) differs from that of other variants. METHODS: ECM proteins in glomeruli from biopsy specimens of patients with FSGS not otherwise specified (FSGS-NOS) or cFSGS and from normal controls were distinguished and quantified using mass spectrometry, verified and localized using immunohistochemistry (IHC) and confocal microscopy, and assessed for gene expression. The analysis also quantified urinary excretion of ECM proteins and peptides. RESULTS: Of 58 ECM proteins that differed in abundance between cFSGS and FSGS-NOS, 41 were more abundant in cFSGS and 17 in FSGS-NOS. IHC showed that glomerular tuft staining for cathepsin B, cathepsin C, and annexin A3 in cFSGS was significantly greater than in other FSGS variants, in minimal change disease, or in membranous nephropathy. Annexin A3 colocalized with cathepsin B and C, claudin-1, phosphorylated ERK1/2, and CD44, but not with synaptopodin, in parietal epithelial cells (PECs) infiltrating cFSGS glomeruli. Transcripts for cathepsins B and C were increased in FSGS glomeruli compared with normal controls, and urinary excretion of both cathepsins was significantly greater in cFSGS compared with FSGS-NOS. Urinary excretion of ECM-derived peptides was enhanced in cFSGS, although in silico analysis did not identify enhanced excretion of peptides derived from cathepsin B or C. CONCLUSIONS: ECM differences suggest that glomerular sclerosis in cFSGS differs from that in other FSGS variants. Infiltration of activated PECs may disrupt ECM remodeling in cFSGS. These cells and their cathepsins may be therapeutic targets.


Assuntos
Proteínas da Matriz Extracelular/análise , Glomerulosclerose Segmentar e Focal/metabolismo , Glomérulos Renais/metabolismo , Proteômica/métodos , Catepsinas/fisiologia , Células Epiteliais/fisiologia , Humanos , Imuno-Histoquímica , Glomérulos Renais/química , Microscopia Confocal
5.
Hypertension ; 71(4): 719-728, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29378858

RESUMO

Numerous studies show a direct relation between circulating autoantibodies, characteristic of systemic autoimmune disorders, and primary hypertension in humans. Whether these autoantibodies mechanistically contribute to the development of hypertension remains unclear. Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder characterized by aberrant immunoglobulin production, notably pathogenic autoantibodies, and is associated with prevalent hypertension, renal injury, and cardiovascular disease. Because plasma cells produce the majority of serum immunoglobulins and are the primary source of autoantibodies in SLE, we hypothesized that plasma cell depletion using the proteasome inhibitor bortezomib would lower autoantibody production and attenuate hypertension. Thirty-week-old female SLE (NZBWF1) and control (NZW [New Zealand White]) mice were injected IV with vehicle (0.9% saline) or bortezomib (0.75 mg/kg) twice weekly for 4 weeks. Bortezomib treatment significantly lowered the percentage of bone marrow plasma cells in SLE mice. Total plasma IgG and anti-dsDNA IgG levels were higher in SLE mice compared with control mice but were lowered by bortezomib treatment. Mean arterial pressure (mm Hg) measured in conscious mice by carotid artery catheter was higher in SLE mice than in control mice, but mean arterial pressure was significantly lower in bortezomib-treated SLE mice. Bortezomib also attenuated renal injury, as assessed by albuminuria and glomerulosclerosis, and reduced glomerular immunoglobulin deposition and B and T lymphocytes infiltration into the kidneys. Taken together, these data show that the production of autoantibodies by plasma cells mechanistically contributes to autoimmune-associated hypertension and suggests a potential role for patients with primary hypertension who have increased circulating immunoglobulins.


Assuntos
Medula Óssea , Bortezomib/farmacologia , Glomerulosclerose Segmentar e Focal , Hipertensão/imunologia , Rim , Lúpus Eritematoso Sistêmico , Plasmócitos/imunologia , Animais , Anticorpos Antinucleares/sangue , Pressão Sanguínea , Medula Óssea/efeitos dos fármacos , Medula Óssea/imunologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Glomerulosclerose Segmentar e Focal/imunologia , Glomerulosclerose Segmentar e Focal/patologia , Hipertensão/complicações , Hipertensão/prevenção & controle , Rim/imunologia , Rim/patologia , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Camundongos , Camundongos Endogâmicos NZB , Inibidores de Proteassoma/farmacologia
6.
Diabetes ; 67(3): 507-517, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29079702

RESUMO

Cardiac insulin resistance is a key pathogenic factor for diabetic cardiomyopathy (DCM), but the mechanism remains largely unclear. We found that diabetic hearts exhibited decreased phosphorylation of total Akt and isoform Akt2 but not Akt1 in wild-type (WT) male FVB mice, which was accompanied by attenuation of Akt downstream glucose metabolic signal. All of these signal changes were not observed in metallothionein cardiac-specific transgenic (MT-TG) hearts. Furthermore, insulin-induced glucose metabolic signals were attenuated only in WT diabetic hearts. In addition, diabetic hearts exhibited increased Akt-negative regulator tribbles pseudokinase 3 (TRB3) expression only in WT mice, suggesting that MT may preserve Akt2 function via inhibiting TRB3. Moreover, MT prevented tert-butyl hydroperoxide (tBHP)-reduced insulin-stimulated Akt2 phosphorylation in MT-TG cardiomyocytes, which was abolished by specific silencing of Akt2. Specific silencing of TRB3 blocked tBHP inhibition of insulin-stimulated Akt2 phosphorylation in WT cardiomyocytes, whereas overexpression of TRB3 in MT-TG cardiomyocytes and hearts abolished MT preservation of insulin-stimulated Akt2 signals and MT prevention of DCM. Most importantly, supplementation of Zn to induce MT preserved cardiac Akt2 signals and prevented DCM. These results suggest that diabetes-inhibited cardiac Akt2 function via TRB3 upregulation leads to aberrant cardiac glucose metabolism. MT preservation of cardiac Akt2 function by inhibition of TRB3 prevents DCM.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Coração/fisiopatologia , Resistência à Insulina , Metalotioneína/metabolismo , Miocárdio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Células Cultivadas , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/fisiopatologia , Coração/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina/farmacologia , Insulina/uso terapêutico , Lipopolissacarídeos/toxicidade , Masculino , Metalotioneína/genética , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Miocárdio/enzimologia , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Especificidade de Órgãos , Oxidantes/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Interferência de RNA
7.
Am J Pathol ; 187(12): 2799-2810, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28935578

RESUMO

Transcription factor NF-κB regulates expression of numerous genes that control inflammation and is activated in glomerular cells in glomerulonephritis (GN). We previously identified genetic variants for a NF-κB regulatory, ubiquitin-binding protein ABIN1 as risk factors for GN in systemic autoimmunity. The goal was to define glomerular inflammatory events controlled by ABIN1 function in GN. Nephrotoxic serum nephritis was induced in wild-type (WT) and ubiquitin-binding deficient ABIN1[D485N] mice, and renal pathophysiology and glomerular inflammatory phenotypes were assessed. Proteinuria was also measured in ABIN1[D485N] mice transplanted with WT mouse bone marrow. Inflammatory activation of ABIN1[D472N] (D485N homolog) cultured human-derived podocytes, and interaction with primary human neutrophils were also assessed. Disruption of ABIN1 function exacerbated proteinuria, podocyte injury, glomerular NF-κB activity, glomerular expression of inflammatory mediators, and glomerular recruitment and retention of neutrophils in antibody-mediated nephritis. Transplantation of WT bone marrow did not prevent the increased proteinuria in ABIN1[D845N] mice. Tumor necrosis factor-stimulated enhanced expression and secretion of NF-κB-targeted proinflammatory mediators in ABIN1[D472N] cultured podocytes compared with WT cells. Supernatants from ABIN1[D472N] podocytes accelerated chemotaxis of human neutrophils, and ABIN1[D472N] podocytes displayed a greater susceptibility to injurious morphologic findings induced by neutrophil granule contents. These studies define a novel role for ABIN1 dysfunction and NF-κB in mediating GN through proinflammatory activation of podocytes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Glomerulonefrite/patologia , NF-kappa B/metabolismo , Podócitos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Glomerulonefrite/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Mutantes
8.
Am J Physiol Cell Physiol ; 313(2): C197-C206, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28515088

RESUMO

Dopamine decreases Na-K-ATPase (NKA) activity by PKC-dependent phosphorylation and endocytosis of the NKA α1. Dopamine-mediated regulation of NKA is impaired in aging and some forms of hypertension. Using opossum (OK) proximal tubule cells (PTCs), we demonstrated that sodium-hydrogen exchanger regulatory factor-1 (NHERF-1) associates with NKA α1 and dopamine-1 receptor (D1R). This association is required for the dopamine-mediated regulation of NKA. In OK cells, dopamine decreases NHERF-1 association with NKA α1 but increases its association with D1R. However, it is not known whether NHERF-1 plays a role in dopamine-mediated NKA regulation in animal models of hypertension. We hypothesized that defective dopamine-mediated regulation of NKA results from the decrease in NHERF-1 expression in rat renal PTCs isolated from animal models of hypertension [spontaneously hypertensive rats (SHRs) and aged F344 rats]. To test this hypothesis, we isolated and cultured renal PTCs from 22-mo-old F344 rats and their controls, normotensive 4-mo-old F344 rats, and SHRs and their controls, normotensive Wistar-Kyoto (WKY) rats. The results demonstrate that in both hypertensive models (SHR and aged F344), NHERF-1 expression, dopamine-mediated phosphorylation of NKA, and ouabain-inhibitable K+ transport are reduced. Transfection of NHERF-1 into PTCs from aged F344 and SHRs restored dopamine-mediated inhibition of NKA. These results suggest that decreased renal NHERF-1 expression contributes to the impaired dopamine-mediated inhibition of NKA in PTCs from animal models of hypertension.


Assuntos
Hipertensão/genética , Túbulos Renais Proximais/metabolismo , Fosfoproteínas/biossíntese , Trocadores de Sódio-Hidrogênio/biossíntese , ATPase Trocadora de Sódio-Potássio/biossíntese , Animais , Pressão Sanguínea/genética , Linhagem Celular , Modelos Animais de Doenças , Dopamina/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Hipertensão/metabolismo , Hipertensão/patologia , Rim/metabolismo , Rim/patologia , Túbulos Renais Proximais/patologia , Masculino , Fosfoproteínas/genética , Ratos , Ratos Endogâmicos SHR , Transdução de Sinais/genética , Trocadores de Sódio-Hidrogênio/genética , ATPase Trocadora de Sódio-Potássio/genética
9.
Circ Res ; 120(5): e7-e23, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28137917

RESUMO

RATIONALE: Endothelial progenitor cells (EPCs) respond to stromal cell-derived factor 1 (SDF-1) through chemokine receptors CXCR7 and CXCR4. Whether SDF-1 receptors involves in diabetes mellitus-induced EPCs dysfunction remains unknown. OBJECTIVE: To determine the role of SDF-1 receptors in diabetic EPCs dysfunction. METHODS AND RESULTS: CXCR7 expression, but not CXCR4 was reduced in EPCs from db/db mice, which coincided with impaired tube formation. Knockdown of CXCR7 impaired tube formation of EPCs from normal mice, whereas upregulation of CXCR7 rescued angiogenic function of EPCs from db/db mice. In normal EPCs treated with oxidized low-density lipoprotein or high glucose also reduced CXCR7 expression, impaired tube formation, and increased oxidative stress and apoptosis. The damaging effects of oxidized low-density lipoprotein or high glucose were markedly reduced by SDF-1 pretreatment in EPCs transduced with CXCR7 lentivirus but not in EPCs transduced with control lentivirus. Most importantly, EPCs transduced with CXCR7 lentivirus were superior to EPCs transduced with control lentivirus for therapy of ischemic limbs in db/db mice. Mechanistic studies demonstrated that oxidized low-density lipoprotein or high glucose inhibited protein kinase B and glycogen synthase kinase-3ß phosphorylation, nuclear export of Fyn and nuclear localization of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), blunting Nrf2 downstream target genes heme oxygenase-1, NAD(P)H dehydrogenase (quinone 1) and catalase, and inducing an increase in EPC oxidative stress. This destructive cascade was blocked by SDF-1 treatment in EPCs transduced with CXCR7 lentivirus. Furthermore, inhibition of phosphatidylinositol 3-kinase/protein kinase B prevented SDF-1/CXCR7-mediated Nrf2 activation and blocked angiogenic repair. Moreover, Nrf2 knockdown almost completely abolished the protective effects of SDF-1/CXCR7 on EPC function in vitro and in vivo. CONCLUSIONS: Elevated expression of CXCR7 enhances EPC resistance to diabetes mellitus-induced oxidative damage and improves therapeutic efficacy of EPCs in treating diabetic limb ischemia. The benefits of CXCR7 are mediated predominantly by a protein kinase B/glycogen synthase kinase-3ß/Fyn pathway via increased activity of Nrf2.


Assuntos
Diabetes Mellitus/metabolismo , Células Progenitoras Endoteliais/fisiologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Isquemia/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Receptores CXCR/biossíntese , Animais , Células Cultivadas , Diabetes Mellitus/patologia , Técnicas de Silenciamento de Genes , Células HEK293 , Membro Posterior/irrigação sanguínea , Membro Posterior/metabolismo , Membro Posterior/patologia , Humanos , Isquemia/patologia , Masculino , Camundongos , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2/metabolismo , Neovascularização Fisiológica/fisiologia , Estresse Oxidativo/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
10.
J Leukoc Biol ; 102(1): 19-29, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28096297

RESUMO

Neutrophil granule exocytosis plays an important role in innate and adaptive immune responses. The present study examined TNF-α stimulation or priming of exocytosis of the 4 neutrophil granule subsets. TNF-α stimulated exocytosis of secretory vesicles and gelatinase granules and primed specific and azurophilic granule exocytosis to fMLF stimulation. Both stimulation and priming of exocytosis by TNF-α were dependent on p38 MAPK activity. Bioinformatic analysis of 1115 neutrophil proteins identified by mass spectrometry as being phosphorylated by TNF-α exposure found that actin cytoskeleton regulation was a major biologic function. A role for p38 MAPK regulation of the actin cytoskeleton was confirmed experimentally. Thirteen phosphoproteins regulated secretory vesicle quantity, formation, or release, 4 of which-Raf1, myristoylated alanine-rich protein kinase C (PKC) substrate (MARCKS), Abelson murine leukemia interactor 1 (ABI1), and myosin VI-were targets of the p38 MAPK pathway. Pharmacologic inhibition of Raf1 reduced stimulated exocytosis of gelatinase granules and priming of specific granule exocytosis. We conclude that differential regulation of exocytosis by TNF-α involves the actin cytoskeleton and is a necessary component for priming of the 2 major neutrophil antimicrobial defense mechanisms: oxygen radical generation and release of toxic granule contents.


Assuntos
Exocitose/imunologia , Ativação de Neutrófilo , Neutrófilos/imunologia , Vesículas Secretórias/imunologia , Fator de Necrose Tumoral alfa/imunologia , Citoesqueleto de Actina/imunologia , Exocitose/efeitos dos fármacos , Gelatinases/imunologia , Humanos , Lipoilação/efeitos dos fármacos , Lipoilação/imunologia , Proteína Quinase C/imunologia , Proteínas Proto-Oncogênicas c-abl/imunologia , Proteínas Proto-Oncogênicas c-raf/imunologia , Fator de Necrose Tumoral alfa/farmacologia , alfa-Defensinas/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia
11.
Biochim Biophys Acta Proteins Proteom ; 1865(2): 186-194, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27816562

RESUMO

BACKGROUND: A targeted analysis of the 50kDa C-terminal fragment of insulin-response element binding protein-1 (IRE-BP1) activation of target genes through the insulin receptor substrate receptor/PI-3 kinase/Akt pathway has been demonstrated for the insulin growth factor-1 receptor. The broader effects of 50kDa C-terminal IRE-BP1 fragment over-expression on protein abundance in pancreatic islet beta cells have not been determined. RESULTS: Liquid-chromatography coupled to tandem mass spectrometry (LC-MS/MS) analyses of replicate lysates of pancreatic islets isolated from background strain animals and transgenic animals, overexpressing IRE-BP1 in pancreatic islet beta cells, demonstrated statistically significant increases in the expression of proteins involved in protein synthesis, endoplasmic reticulum (ER) stress and scaffolding proteins important for protein kinase C signaling; some of which were confirmed by immunoblot analyses. Bioinformatic analysis of protein expression network patterns suggested IRE-BP1 over-expression leads to protein expression patterns indicative of activation of functional protein networks utilized for protein post-translational modification, protein folding, and protein synthesis. Co-immunoprecipitation experiments demonstrate a novel interaction between two differentially regulated proteins receptor for activated protein kinase C (RACK1) and translationally controlled tumor protein (TCTP). CONCLUSIONS: Proteomic analysis of IRE-BP1 over-expression in pancreatic islet beta cells suggest IRE-BP1 (a) directly or indirectly through establishing hyperglycemia results in increased expression of ribosomal proteins and markers of ER stress and (b) leads to the enhanced and previously un-described interaction of RACK1 and TCTP. SIGNIFICANCE: This study identified C-terminal 50kDa domain of IRE-BP1 over-expression results in increased markers of ER-stress and a novel interaction between the scaffolding proteins RACK1 and TCTP.


Assuntos
Biomarcadores Tumorais/metabolismo , Biomarcadores/metabolismo , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Proteína 1 Reguladora do Ferro/metabolismo , Ilhotas Pancreáticas/metabolismo , Neuropeptídeos/metabolismo , Animais , Estresse do Retículo Endoplasmático/fisiologia , Hiperglicemia , Insulina/metabolismo , Camundongos , Proteína Quinase C/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteômica/métodos , Receptores de Quinase C Ativada , Elementos de Resposta/fisiologia , Proteína Tumoral 1 Controlada por Tradução
12.
Kidney Int ; 91(2): 501-511, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27988214

RESUMO

Abnormal extracellular matrix (ECM) remodeling is a prominent feature of many glomerular diseases and is a final common pathway of glomerular injury. However, changes in ECM composition accompanying disease-related remodeling are unknown. The physical properties of ECM create challenges for characterization of composition using standard protein extraction techniques, as the insoluble components of ECM are frequently discarded and many ECM proteins are in low abundance compared to other cell proteins. Prior proteomic studies defining normal ECM composition used a large number of glomeruli isolated from human kidneys retrieved for transplantation or by nephrectomy for cancer. Here we examined the ability to identify ECM proteins by mass spectrometry using glomerular sections compatible with those available from standard renal biopsy specimens. Proteins were classified as ECM by comparison to the Matrisome database and previously identified glomerular ECM proteins. Optimal ECM protein identification resulted from sequential decellularization and protein extraction of 100 human glomerular sections isolated by laser capture microdissection from either frozen or formalin-fixed, paraffin-embedded tissue. In total, 147 ECM proteins were identified, including the majority of structural and GBM proteins previously identified along with a number of matrix and glomerular basement membrane proteins not previously associated with glomeruli. Thus, our study demonstrates the feasibility of proteomic analysis of glomerular ECM from retrieved glomerular sections isolated from renal biopsy tissue and expands the list of known ECM proteins in glomeruli.


Assuntos
Proteínas da Matriz Extracelular/análise , Matriz Extracelular/química , Membrana Basal Glomerular/química , Nefropatias/metabolismo , Microdissecção e Captura a Laser , Proteômica/métodos , Biomarcadores/análise , Biópsia , Bases de Dados de Proteínas , Matriz Extracelular/patologia , Estudos de Viabilidade , Fixadores , Formaldeído , Secções Congeladas , Membrana Basal Glomerular/patologia , Humanos , Nefropatias/diagnóstico , Espectrometria de Massas , Inclusão em Parafina , Valor Preditivo dos Testes , Mapas de Interação de Proteínas , Reprodutibilidade dos Testes , Fixação de Tecidos/métodos
13.
PLoS One ; 10(4): e0121637, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25848767

RESUMO

Immune-complexes play an important role in the inflammatory diseases of the lung. Neutrophil activation mediates immune-complex (IC) deposition-induced acute lung injury (ALI). Components of gamma amino butyric acid (GABA) signaling, including GABA B receptor 2 (GABABR2), GAD65/67 and the GABA transporter, are present in the lungs and in the neutrophils. However, the role of pulmonary GABABR activation in the context of neutrophil-mediated ALI has not been determined. Thus, the objective of the current study was to determine whether administration of a GABABR agonist, baclofen would ameliorate or exacerbate ALI. We hypothesized that baclofen would regulate IC-induced ALI by preserving pulmonary GABABR expression. Rats were subjected to sham injury or IC-induced ALI and two hours later rats were treated intratracheally with saline or 1 mg/kg baclofen for 2 additional hours and sacrificed. ALI was assessed by vascular leakage, histology, TUNEL, and lung caspase-3 cleavage. ALI increased total protein, tumor necrosis factor α (TNF-α and interleukin-1 receptor associated protein (IL-1R AcP), in the bronchoalveolar lavage fluid (BALF). Moreover, ALI decreased lung GABABR2 expression, increased phospho-p38 MAPK, promoted IκB degradation and increased neutrophil influx in the lung. Administration of baclofen, after initiation of ALI, restored GABABR expression, which was inhibited in the presence of a GABABR antagonist, CGP52432. Baclofen administration activated pulmonary phospho-ERK and inhibited p38 MAPK phosphorylation and IκB degradation. Additionally, baclofen significantly inhibited pro-inflammatory TNF-α and IL-1ßAcP release and promoted BAL neutrophil apoptosis. Protective effects of baclofen treatment on ALI were possibly mediated by inhibition of TNF-α- and IL-1ß-mediated inflammatory signaling. Interestingly, GABABR2 expression was regulated in the type II pneumocytes in lung tissue sections from lung injured patients, further suggesting a physiological role for GABABR2 in the repair process of lung damage. GABABR2 agonists may play a potential therapeutic role in ALI.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Complexo Antígeno-Anticorpo/toxicidade , Baclofeno/farmacologia , Agonistas dos Receptores de GABA-B/farmacologia , Mediadores da Inflamação/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Líquido da Lavagem Broncoalveolar/química , Técnicas Imunoenzimáticas , Lipopolissacarídeos/farmacologia , Masculino , Ratos , Ratos Long-Evans , Receptores de GABA-B/química , Receptores de GABA-B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
14.
Cell Signal ; 27(6): 1178-1185, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25725285

RESUMO

The γ-amino butyric acid (GABA) type B receptors (GABA(B)R) function as chemoattractant receptors in response to GABA(B)R agonists in human neutrophils. The goal of this study was to define signaling mechanisms regulating GABA(B)R-mediated chemotaxis and cytoskeletal rearrangement. In a proteomic study we identified serine/threonine kinase Akt, tyrosine kinases Src and Pyk2, microtubule regulator kinesin and microtubule affinity-regulating kinase (MARK) co-immunoprecipitating with GABA(B)R. To define the contributions of these candidate signaling events in GABA(B)R-mediated chemotaxis, we used rat basophilic leukemic cells (RBL-2H3 cells) stably transfected with human GABA(B1b) and GABA(B2) receptors. The GABA(B)R agonist baclofen induced Akt phosphorylation and chemotaxis by binding to its specific GABA(B)R since pretreatment of cells with CGP52432, a GABA(B)R antagonist, blocked such effects. Moreover, baclofen induced Akt phosphorylation was shown to be dependent upon PI-3K and Src kinases. Baclofen failed to stimulate actin polymerization in suspended RBL cells unless exposed to a baclofen gradient. However, baclofen stimulated both actin and tubulin polymerization in adherent RBL-GABA(B)R cells. Blockade of actin and tubulin polymerization by treatment of cells with cytochalasin D or nocodazole respectively, abolished baclofen-mediated chemotaxis. Furthermore, baclofen stimulated Pyk2 and STAT3 phosphorylation, both known regulators of cell migration. In conclusion, GABA(B)R stimulation promotes chemotaxis in RBL cells which is dependent on signaling via PI3-K/Akt, Src kinases and on rearrangement of both microtubules and actin cytoskeleton. These data define mechanisms of GABA(B)R-mediated chemotaxis which may potentially be used to therapeutically regulate cellular response to injury and disease.


Assuntos
Quimiotaxia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de GABA-B/metabolismo , Quinases da Família src/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Animais , Baclofeno/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Citocalasina D/farmacologia , Quinase 2 de Adesão Focal/metabolismo , Agonistas dos Receptores de GABA-B/farmacologia , Antagonistas de Receptores de GABA-B/farmacologia , Humanos , Nocodazol/farmacologia , Fosforilação/efeitos dos fármacos , Ratos , Receptores de GABA-B/química , Receptores de GABA-B/genética , Fator de Transcrição STAT3/metabolismo , Tubulina (Proteína)/metabolismo
15.
Eukaryot Cell ; 13(10): 1328-36, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25128189

RESUMO

Dimorphic transitions between yeast-like and filamentous forms occur in many fungi and are often associated with pathogenesis. One of the cues for such a dimorphic switch is the availability of nutrients. Under conditions of nitrogen limitation, fungal cells (such as those of Saccharomyces cerevisiae and Ustilago maydis) switch from budding to pseudohyphal or filamentous growth. Ammonium transporters (AMTs) are responsible for uptake and, in some cases, for sensing the availability of ammonium, a preferred nitrogen source. Homodimer and/or heterodimer formation may be required for regulating the activity of the AMTs. To investigate the potential interactions of Ump1 and Ump2, the AMTs of the maize pathogen U. maydis, we first used the split-ubiquitin system, followed by a modified split-YFP (yellow fluorescent protein) system, to validate the interactions in vivo. This analysis showed the formation of homo- and hetero-oligomers by Ump1 and Ump2. We also demonstrated the interaction of the high-affinity ammonium transporter, Ump2, with the Rho1 GTPase, a central protein in signaling, with roles in controlling polarized growth. This is the first demonstration in eukaryotes of the physical interaction in vivo of an ammonium transporter with the signaling protein Rho1. Moreover, the Ump proteins interact with Rho1 during the growth of cells in low ammonium concentrations, a condition required for the expression of the Umps. Based on these results and the genetic evidence for the interaction of Ump2 with both Rho1 and Rac1, another small GTPase, we propose a model for the role of these interactions in controlling filamentation, a fundamental aspect of development and pathogenesis in U. maydis.


Assuntos
Proteínas Fúngicas/genética , Transporte de Íons/genética , Transdução de Sinais , Ustilago/genética , Sequência de Aminoácidos , AMP Cíclico , Regulação Fúngica da Expressão Gênica/genética , Hifas/genética , Hifas/crescimento & desenvolvimento , Chaperonas Moleculares/genética , Nitrogênio/metabolismo , Saccharomyces cerevisiae/genética , Ustilago/crescimento & desenvolvimento , Zea mays/microbiologia
16.
Biochim Biophys Acta ; 1833(10): 2143-52, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23684706

RESUMO

The mechanisms by which aldosterone increases Na(+), K(+) ATPase and sodium channel activity in cortical collecting duct and distal nephron have been extensively studied. Recent investigations demonstrate that aldosterone increases Na-H exchanger-3 (NHE-3) activity, bicarbonate transport, and H(+) ATPase in proximal tubules. However, the role of aldosterone in regulation of Na(+), K(+) ATPase in proximal tubules is unknown. We hypothesize that aldosterone increases Na(+), K(+) ATPase activity in proximal tubules through activation of the mineralocorticoid receptor (MR). Immunohistochemistry of kidney sections from human, rat, and mouse kidneys revealed that the MR is expressed in the cytosol of tubules staining positively for Lotus tetragonolobus agglutinin and type IIa sodium-phosphate cotransporter (NpT2a), confirming proximal tubule localization. Adrenalectomy in Sprague-Dawley rats decreased expression of MR, ENaC α, Na(+), K(+) ATPase α1, and NHE-1 in all tubules, while supplementation with aldosterone restored expression of above proteins. In human kidney proximal tubule (HKC11) cells, treatment with aldosterone resulted in translocation of MR to the nucleus and phosphorylation of SGK-1. Treatment with aldosterone also increased Na(+), K(+) ATPase-mediated (86)Rb uptake and expression of Na(+), K(+) ATPase α1 subunits in HKC11 cells. The effects of aldosterone on Na(+), K(+) ATPase-mediated (86)Rb uptake were prevented by spironolactone, a competitive inhibitor of aldosterone for the MR, and partially by Mifepristone, a glucocorticoid receptor (GR) inhibitor. These results suggest that aldosterone regulates Na(+), K(+) ATPase in renal proximal tubule cells through an MR-dependent mechanism.


Assuntos
Trifosfato de Adenosina/metabolismo , Aldosterona/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Receptores de Mineralocorticoides/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Western Blotting , Membrana Celular , Células Cultivadas , Humanos , Hidrólise , Técnicas Imunoenzimáticas , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley
17.
J Mol Cell Cardiol ; 57: 82-95, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23353773

RESUMO

This study was to investigate whether sulforaphane (SFN) can prevent diabetic cardiomyopathy. Type 1 diabetes was induced in FVB mice by multiple intraperitoneal injections with low-dose streptozotocin. Hyperglycemic and age-matched control mice were treated with or without SFN at 0.5mg/kg daily in five days of each week for 3 months and then kept until 6 months. At 3 and 6 months of diabetes, blood pressure and cardiac function were assessed. Cardiac fibrosis, inflammation, and oxidative damage were assessed by Western blot, real-time qPCR, and histopathological examination. SFN significantly prevented diabetes-induced high blood pressure and cardiac dysfunction at both 3 and 6 months, and also prevented diabetes-induced cardiac hypertrophy (increased the ratio of heart weight to tibia length and the expression of atrial natriuretic peptide mRNA and protein) and fibrosis (increased the accumulation of collagen and expression of connective tissue growth factor and tissue growth factor-ß). SFN also almost completely prevented diabetes-induced cardiac oxidative damage (increased accumulation of 3-nitrotyrosine and 4-hydroxynonenal) and inflammation (increased tumor necrotic factor-α and plasminogen activator inhibitor 1 expression). SFN up-regulated NFE2-related factor 2 (Nrf2) expression and transcription activity that was reflected by increased Nrf2 nuclear accumulation and phosphorylation as well as the mRNA and protein expression of Nrf2 downstream antioxidants. Furthermore, in cultured H9c2 cardiac cells silencing Nrf2 gene with its siRNA abolished the SFN's prevention of high glucose-induced fibrotic response. These results suggest that diabetes-induced cardiomyopathy can be prevented by SFN, which was associated with the up-regulated Nrf2 expression and transcription function.


Assuntos
Diabetes Mellitus Experimental/complicações , Cardiomiopatias Diabéticas/prevenção & controle , Hipertrofia Ventricular Esquerda/prevenção & controle , Fator 2 Relacionado a NF-E2/metabolismo , Tiocianatos/uso terapêutico , Ativação Transcricional , Animais , Catalase/metabolismo , Linhagem Celular , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/fisiopatologia , Avaliação Pré-Clínica de Medicamentos , Fibrose , Heme Oxigenase-1/metabolismo , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/metabolismo , Isotiocianatos , Peroxidação de Lipídeos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Ratos , Serpina E2/metabolismo , Sulfóxidos , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Tiocianatos/farmacologia , Transcrição Gênica , Regulação para Cima
18.
Am J Physiol Renal Physiol ; 304(8): F1076-85, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23344572

RESUMO

The acute inhibitory effects of parathyroid hormone (PTH) on proximal tubule Na(+)-K(+)-ATPase (Na-K) and sodium-dependent phosphate (NaPi) transport have been extensively studied, while little is known about the chronic effects of PTH. Patients with primary hyperparathyroidism, a condition characterized by chronic elevations in PTH, exhibit persistent hypophosphatemia but not significant evidence of salt wasting. We postulate that chronic PTH stimulation results in differential desensitization of PTH responses. To address this hypothesis, we compared the effects of chronic PTH stimulation on Na-P(i) cotransporter (Npt2a) expression and Na-K activity and expression in Sprague Dawley rats, transgenic mice featuring parathyroid-specific cyclin D1 overexpression (PTH-D1), and proximal tubule cell culture models. We demonstrated a progressive decrease in brush-border membrane (BBM) expression of Npt2a from rats treated with PTH for 6 h or 4 days, while Na-K expression and activity in the basolateral membranes (BLM) exhibited an initial decrease followed by recovery to control levels by 4 days. Npt2a protein expression in PTH-D1 mice was decreased relative to control animals, whereas levels of Na-K, NHERF-1, and PTH receptor remained unchanged. In PTH-D1 mice, NpT2a mRNA expression was reduced by 50% relative to control mice. In opossum kidney proximal tubule cells, PTH decreased Npt2a mRNA levels. Both actinomycin D and cycloheximide treatment prevented the PTH-mediated decrease in Npt2a mRNA, suggesting that the PTH response requires transcription and translation. These findings suggest that responses to chronic PTH exposure are selectively regulated at a posttranscriptional level. The persistence of the phosphaturic response to PTH occurs through posttranscriptional mechanisms.


Assuntos
Hipofosfatemia/genética , Túbulos Renais Proximais/fisiologia , Hormônio Paratireóideo/metabolismo , Estabilidade de RNA/fisiologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Animais , Células Cultivadas , Ciclina D1/genética , Ciclina D1/metabolismo , Modelos Animais de Doenças , Hipofosfatemia/metabolismo , Córtex Renal/citologia , Córtex Renal/fisiologia , Túbulos Renais Proximais/citologia , Camundongos , Camundongos Transgênicos , Gambás , Hormônio Paratireóideo/farmacologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Processamento Pós-Transcricional do RNA/fisiologia , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo
19.
Biochim Biophys Acta ; 1814(12): 1748-57, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22001063

RESUMO

Notch proteins (Notch 1-4) are a family of trans-membrane cell surface receptors that are converted into transcriptional regulators when activated by interactions with cell surface ligands on adjacent cells. Ligand-binding stimulates proteolytic cleavage of the trans-membrane domain, releasing an active intracellular domain (ICD) that translocates to the nucleus and impacts transcription. In transit, the ICD may interact with regulatory proteins that modulate the expression and transcriptional activity. We have found that Notch4(ICD) expression is enhanced in the tubule cells of fibrotic kidneys from diabetic mice and humans and identified Notch4(ICD) interacting proteins that could be pertinent to normal and pathological functions. Using proteomic techniques, several components of the Elongin C complex were identified as candidate Notch4(ICD) interactors. Elongin C complexes can function as ubiquitin ligases capable of regulating proteasomal degradation of specific protein substrates. Our studies indicate that ectopic Elongin C expression stimulates Notch4(ICD) degradation and inhibits its transcriptional activity in human kidney tubule HK11 cells. Blocking Elongin C mediated degradation by MG132 indicates the potential for ubiquitin-mediated Elongin C regulation of Notch4(ICD). Functional interaction of Notch4(ICD) and Elongin C provides novel insight into regulation of Notch signaling in epithelial cell biology and disease.


Assuntos
Túbulos Renais/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Notch/metabolismo , Fatores de Transcrição/fisiologia , Animais , Células Cultivadas , Elonguina , Fibrose/genética , Fibrose/metabolismo , Regulação da Expressão Gênica , Humanos , Túbulos Renais/patologia , Túbulos Renais/fisiologia , Camundongos , Camundongos Transgênicos , Ligação Proteica/genética , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas/genética , Domínios e Motivos de Interação entre Proteínas/fisiologia , Estabilidade Proteica , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Receptor Notch4 , Receptores Notch/química , Receptores Notch/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção , Fator de Crescimento Transformador beta/metabolismo
20.
J Immunol ; 187(1): 391-400, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21642540

RESUMO

The role of exocytosis in the human neutrophil respiratory burst was determined using a fusion protein (TAT-SNAP-23) containing the HIV transactivator of transcription (TAT) cell-penetrating sequence and the N-terminal SNARE domain of synaptosome-associated protein-23 (SNAP-23). This agent inhibited stimulated exocytosis of secretory vesicles and gelatinase and specific granules but not azurophil granules. GST pulldown showed that TAT-SNAP-23 bound to the combination of vesicle-associated membrane protein-2 and syntaxin-4 but not to either individually. TAT-SNAP-23 reduced phagocytosis-stimulated hydrogen peroxide production by 60% without affecting phagocytosis or generation of HOCl within phagosomes. TAT-SNAP-23 had no effect on fMLF-stimulated superoxide release but significantly inhibited priming of this response by TNF-α and platelet-activating factor. Pretreatment with TAT-SNAP-23 inhibited the increase in plasma membrane expression of gp91(phox) in TNF-α-primed neutrophils, whereas TNF-α activation of ERK1/2 and p38 MAPK was not affected. The data demonstrate that neutrophil granule exocytosis contributes to phagocytosis-induced respiratory burst activity and plays a critical role in priming of the respiratory burst by increasing expression of membrane components of the NADPH oxidase.


Assuntos
Grânulos Citoplasmáticos/imunologia , Exocitose/imunologia , Ativação de Neutrófilo/imunologia , Explosão Respiratória/imunologia , Apoptose/genética , Apoptose/imunologia , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/metabolismo , Exocitose/genética , Produtos do Gene tat/antagonistas & inibidores , Produtos do Gene tat/genética , Produtos do Gene tat/metabolismo , HIV-1/imunologia , Humanos , Ativação de Neutrófilo/genética , Fagocitose/genética , Fagocitose/imunologia , Fator de Ativação de Plaquetas/fisiologia , Estrutura Terciária de Proteína/genética , Proteínas Qb-SNARE/antagonistas & inibidores , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/antagonistas & inibidores , Proteínas Qc-SNARE/genética , Proteínas Qc-SNARE/metabolismo , Proteínas Recombinantes de Fusão/antagonistas & inibidores , Proteínas Recombinantes de Fusão/metabolismo , Explosão Respiratória/genética , Proteínas SNARE/antagonistas & inibidores , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Fator de Necrose Tumoral alfa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA