Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 75: 103211, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38908072

RESUMO

Ferroptosis is a pervasive non-apoptotic form of cell death highly relevant in various degenerative diseases and malignancies. The hallmark of ferroptosis is uncontrolled and overwhelming peroxidation of polyunsaturated fatty acids contained in membrane phospholipids, which eventually leads to rupture of the plasma membrane. Ferroptosis is unique in that it is essentially a spontaneous, uncatalyzed chemical process based on perturbed iron and redox homeostasis contributing to the cell death process, but that it is nonetheless modulated by many metabolic nodes that impinge on the cells' susceptibility to ferroptosis. Among the various nodes affecting ferroptosis sensitivity, several have emerged as promising candidates for pharmacological intervention, rendering ferroptosis-related proteins attractive targets for the treatment of numerous currently incurable diseases. Herein, the current members of a Germany-wide research consortium focusing on ferroptosis research, as well as key external experts in ferroptosis who have made seminal contributions to this rapidly growing and exciting field of research, have gathered to provide a comprehensive, state-of-the-art review on ferroptosis. Specific topics include: basic mechanisms, in vivo relevance, specialized methodologies, chemical and pharmacological tools, and the potential contribution of ferroptosis to disease etiopathology and progression. We hope that this article will not only provide established scientists and newcomers to the field with an overview of the multiple facets of ferroptosis, but also encourage additional efforts to characterize further molecular pathways modulating ferroptosis, with the ultimate goal to develop novel pharmacotherapies to tackle the various diseases associated with - or caused by - ferroptosis.


Assuntos
Ferroptose , Humanos , Animais , Ferro/metabolismo , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Peroxidação de Lipídeos , Oxirredução , Suscetibilidade a Doenças
2.
Nat Struct Mol Biol ; 31(8): 1277-1285, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38867112

RESUMO

Ferroptosis is a form of regulated cell death induced by iron-dependent accumulation of lipid hydroperoxides. Selenoprotein glutathione peroxidase 4 (GPX4) suppresses ferroptosis by detoxifying lipid hydroperoxides via a catalytic selenocysteine (Sec) residue. Sec, the genetically encoded 21st amino acid, is biosynthesized from a reactive selenium donor on its cognate tRNA[Ser]Sec. It is thought that intracellular selenium must be delivered 'safely' and 'efficiently' by a carrier protein owing to its high reactivity and very low concentrations. Here, we identified peroxiredoxin 6 (PRDX6) as a novel selenoprotein synthesis factor. Loss of PRDX6 decreases the expression of selenoproteins and induces ferroptosis via a reduction in GPX4. Mechanistically, PRDX6 increases the efficiency of intracellular selenium utilization by transferring selenium between proteins within the selenocysteyl-tRNA[Ser]Sec synthesis machinery, leading to efficient synthesis of selenocysteyl-tRNA[Ser]Sec. These findings highlight previously unidentified selenium metabolic systems and provide new insights into ferroptosis.


Assuntos
Ferroptose , Ferro , Peroxirredoxina VI , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Selênio , Ferroptose/efeitos dos fármacos , Selênio/metabolismo , Ferro/metabolismo , Humanos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Animais , Peroxirredoxina VI/metabolismo , Peroxirredoxina VI/genética , Camundongos , Selenoproteínas/metabolismo , Selenocisteína/metabolismo , Aminoacil-RNA de Transferência/metabolismo
3.
Redox Biol ; 69: 103018, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199039

RESUMO

Supersulfides, which are defined as sulfur species with catenated sulfur atoms, are increasingly being investigated in biology. We recently identified pyridoxal phosphate (PLP)-dependent biosynthesis of cysteine persulfide (CysSSH) and related supersulfides by cysteinyl-tRNA synthetase (CARS). Here, we investigated the physiological role of CysSSH in budding yeast (Saccharomyces cerevisiae) by generating a PLP-binding site mutation K109A in CRS1 (the yeast ortholog of CARS), which decreased the synthesis of CysSSH and related supersulfides and also led to reduced chronological aging, effects that were associated with an increased endoplasmic reticulum stress response and impaired mitochondrial bioenergetics. Reduced chronological aging in the K109A mutant could be rescued by using exogenous supersulfide donors. Our findings indicate important roles for CARS in the production and metabolism of supersulfides-to mediate mitochondrial function and to regulate longevity.


Assuntos
Longevidade , Proteínas de Saccharomyces cerevisiae , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Enxofre/metabolismo
4.
Nat Commun ; 14(1): 8045, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052817

RESUMO

Zika virus (ZIKV) has emerged as a global health issue, yet neither antiviral therapy nor a vaccine are available. ZIKV is an enveloped RNA virus, replicating in the cytoplasm in close association with ER membranes. Here, we isolate ER membranes from ZIKV-infected cells and determine their proteome. Forty-six host cell factors are enriched in ZIKV remodeled membranes, several of these having a role in redox and methylation pathways. Four proteins are characterized in detail: thioredoxin reductase 1 (TXNRD1) contributing to folding of disulfide bond containing proteins and modulating ZIKV secretion; aldo-keto reductase family 1 member C3 (AKR1C3), regulating capsid protein abundance and thus, ZIKV assembly; biliverdin reductase B (BLVRB) involved in ZIKV induced lipid peroxidation and increasing stability of viral transmembrane proteins; adenosylhomocysteinase (AHCY) indirectly promoting m6A methylation of ZIKV RNA by decreasing the level of S- adenosyl homocysteine and thus, immune evasion. These results highlight the involvement of redox and methylation enzymes in the ZIKV life cycle and their accumulation at virally remodeled ER membranes.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Zika virus/genética , Metilação , Provírus , Replicação Viral/fisiologia , Proteínas Virais/metabolismo , Oxirredução
5.
Antioxid Redox Signal ; 39(13-15): 983-999, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37565274

RESUMO

Significance: Persulfides/polysulfides are sulfur-catenated molecular species (i.e., R-Sn-R', n > 2; R-Sn-H, n > 1, with R = cysteine, glutathione, and proteins), such as cysteine persulfide (CysSSH). These species are abundantly formed as endogenous metabolites in mammalian and human cells and tissues. However, the persulfide synthesis mechanism has yet to be thoroughly discussed. Recent Advances: We used ß-(4-hydroxyphenyl)ethyl iodoacetamide and mass spectrometry to develop sulfur metabolomics, a highly precise, quantitative analytical method for sulfur metabolites. Critical Issues: With this method, we detected appreciable amounts of different persulfide species in biological specimens from various organisms, from the domains Bacteria, Archaea, and Eukarya. By using our rigorously quantitative approach, we identified cysteinyl-tRNA synthetase (CARS) as a novel persulfide synthase, and we found that the CysSSH synthase activity of CARS is highly conserved from the domains Bacteria to Eukarya. Because persulfide synthesis is found not only with CARS but also with other sulfotransferase enzymes in many organisms, persulfides/polysulfides are expected to contribute as fundamental elements to substantially diverse biological phenomena. In fact, persulfide generation in higher organisms-that is, plants and animals-demonstrated various physiological functions that are mediated by redox signaling, such as regulation of energy metabolism, infection, inflammation, and cell death, including ferroptosis. Future Directions: Investigating CARS-dependent persulfide production may clarify various pathways of redox signaling in physiological and pathophysiological conditions and may thereby promote the development of preventive and therapeutic measures for oxidative stress as well as different inflammatory, metabolic, and neurodegenerative diseases. Antioxid. Redox Signal. 39, 983-999.


Assuntos
Cisteína , Sulfetos , Animais , Humanos , Sulfetos/metabolismo , Oxirredução , Cisteína/metabolismo , Enxofre/metabolismo , Mamíferos/metabolismo
6.
Sci Adv ; 9(33): eadg8631, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37595031

RESUMO

Abundant formation of endogenous supersulfides, which include reactive persulfide species and sulfur catenated residues in thiols and proteins (supersulfidation), has been observed. We found here that supersulfides catalyze S-nitrosoglutathione (GSNO) metabolism via glutathione-dependent electron transfer from aldehydes by exploiting alcohol dehydrogenase 5 (ADH5). ADH5 is a highly conserved bifunctional enzyme serving as GSNO reductase (GSNOR) that down-regulates NO signaling and formaldehyde dehydrogenase (FDH) that detoxifies formaldehyde in the form of glutathione hemithioacetal. C174S mutation significantly reduced the supersulfidation of ADH5 and almost abolished GSNOR activity but spared FDH activity. Notably, Adh5C174S/C174S mice manifested improved cardiac functions possibly because of GSNOR elimination and consequent increased NO bioavailability. Therefore, we successfully separated dual functions (GSNOR and FDH) of ADH5 (mediated by the supersulfide catalysis) through the biochemical analysis for supersulfides in vitro and characterizing in vivo phenotypes of the GSNOR-deficient organisms that we established herein. Supersulfides in ADH5 thus constitute a substantial catalytic center for GSNO metabolism mediating electron transfer from aldehydes.


Assuntos
Aldeídos , Óxido Nítrico , Animais , Camundongos , Transporte de Elétrons , Catálise , Glutationa
7.
Nat Chem Biol ; 19(4): 507-517, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36732619

RESUMO

Protein S-persulfidation (P-SSH) is recognized as a common posttranslational modification. It occurs under basal conditions and is often observed to be elevated under stress conditions. However, the mechanism(s) by which proteins are persulfidated inside cells have remained unclear. Here we report that 3-mercaptopyruvate sulfur transferase (MPST) engages in direct protein-to-protein transpersulfidation reactions beyond its previously known protein substrates thioredoxin and MOCS3/Uba4, associated with H2S generation and transfer RNA thiolation, respectively. We observe that depletion of MPST in human cells lowers overall intracellular protein persulfidation levels and identify a subset of proteins whose persulfidation depends on MPST. The predicted involvement of these proteins in the adaptation to stress responses supports the notion that MPST-dependent protein persulfidation promotes cytoprotective functions. The observation of MPST-independent protein persulfidation suggests that other protein persulfidases remain to be identified.


Assuntos
Sulfurtransferases , Humanos , Cisteína , Sulfeto de Hidrogênio/metabolismo , Enxofre/metabolismo
8.
Nat Chem Biol ; 19(1): 28-37, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36109647

RESUMO

Ferroptosis is a type of cell death caused by radical-driven lipid peroxidation, leading to membrane damage and rupture. Here we show that enzymatically produced sulfane sulfur (S0) species, specifically hydropersulfides, scavenge endogenously generated free radicals and, thereby, suppress lipid peroxidation and ferroptosis. By providing sulfur for S0 biosynthesis, cysteine can support ferroptosis resistance independently of the canonical GPX4 pathway. Our results further suggest that hydropersulfides terminate radical chain reactions through the formation and self-recombination of perthiyl radicals. The autocatalytic regeneration of hydropersulfides may explain why low micromolar concentrations of persulfides suffice to produce potent cytoprotective effects on a background of millimolar concentrations of glutathione. We propose that increased S0 biosynthesis is an adaptive cellular response to radical-driven lipid peroxidation, potentially representing a primordial radical protection system.


Assuntos
Ferroptose , Peroxidação de Lipídeos , Morte Celular , Radicais Livres , Enxofre
9.
Pharmacol Ther ; 228: 107916, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34171332

RESUMO

Initially adopted as a mucolytic about 60 years ago, the cysteine prodrug N-acetylcysteine (NAC) is the standard of care to treat paracetamol intoxication, and is included on the World Health Organization's list of essential medicines. Additionally, NAC increasingly became the epitome of an "antioxidant". Arguably, it is the most widely used "antioxidant" in experimental cell and animal biology, as well as clinical studies. Most investigators use and test NAC with the idea that it prevents or attenuates oxidative stress. Conventionally, it is assumed that NAC acts as (i) a reductant of disulfide bonds, (ii) a scavenger of reactive oxygen species and/or (iii) a precursor for glutathione biosynthesis. While these mechanisms may apply under specific circumstances, they cannot be generalized to explain the effects of NAC in a majority of settings and situations. In most cases the mechanism of action has remained unclear and untested. In this review, we discuss the validity of conventional assumptions and the scope of a newly discovered mechanism of action, namely the conversion of NAC into hydrogen sulfide and sulfane sulfur species. The antioxidative and cytoprotective activities of per- and polysulfides may explain many of the effects that have previously been ascribed to NAC or NAC-derived glutathione.


Assuntos
Acetilcisteína , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Humanos , Sulfeto de Hidrogênio , Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA