Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39065744

RESUMO

BACKGROUND: Chronic myeloid leukemia is a hematological malignancy characterized by the abnormal proliferation of leukemic cells. Despite significant progress with tyrosine kinase inhibitors, such as Dasatinib, resistance remains a challenge. The aim of the present study was to investigate the potential of Selinexor, an Exportin-1 inhibitor, to improve TKI effectiveness on CML. METHODS: Human CML cell lines (LAMA84 and K562) were treated with Selinexor, Dasatinib, or their combination. Apoptosis, mitochondrial membrane potential, and mitochondrial mass were assessed using flow cytometry. Real-time RT-PCR was used to evaluate the expression of genes related to mitochondrial function. Western blot and confocal microscopy examined PINK and heme oxygenase-1 (HO-1) protein levels. RESULTS: Selinexor induced apoptosis and mitochondrial depolarization in CML cell lines, reducing cell viability. The Dasatinib/Selinexor combination further enhanced cytotoxicity, modified mitochondrial fitness, and downregulated HO-1 nuclear translocation, which has been associated with drug resistance in different models. CONCLUSIONS: In conclusion, this study suggests that Dasatinib/Selinexor could be a promising therapeutic strategy for CML, providing new insights for new targeted therapies.

2.
Aging (Albany NY) ; 16(12): 10203-10215, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942607

RESUMO

Down Syndrome (DS) is a common genetic disorder characterized by an extra copy of chromosome 21, leading to dysregulation of various metabolic pathways. Oxidative stress in DS is associated with neurodevelopmental defects, neuronal dysfunction, and a dementia onset resembling Alzheimer's disease. Additionally, chronic oxidative stress contributes to cardiovascular diseases and certain cancers prevalent in DS individuals. This study investigates the impact of ageing on oxidative stress and liver fibrosis using a DS murine model (Ts2Cje mice). Our results show that DS mice show increased liver oxidative stress and impaired antioxidant defenses, as evidenced by reduced glutathione levels and increased lipid peroxidation. Therefore, DS liver exhibits an altered inflammatory response and mitochondrial fitness as we showed by assaying the expression of HMOX1, CLPP, and the heat shock proteins Hsp90 and Hsp60. DS liver also displays dysregulated lipid metabolism, indicated by altered expression of PPARα, PPARγ, FATP5, and CTP2. Consistently, these changes might contribute to non-alcoholic fatty liver disease development, a condition characterized by liver fat accumulation. Consistently, histological analysis of DS liver reveals increased fibrosis and steatosis, as showed by Col1a1 increased expression, indicative of potential progression to liver cirrhosis. Therefore, our findings suggest an increased risk of liver pathologies in DS individuals, particularly when combined with the higher prevalence of obesity and metabolic dysfunctions in DS patients. These results shed a light on the liver's role in DS-associated pathologies and suggest potential therapeutic strategies targeting oxidative stress and lipid metabolism to prevent or mitigate liver-related complications in DS individuals.


Assuntos
Envelhecimento , Modelos Animais de Doenças , Síndrome de Down , Cirrose Hepática , Estresse Oxidativo , Animais , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Síndrome de Down/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Envelhecimento/metabolismo , Camundongos , Fígado/metabolismo , Fígado/patologia , Metabolismo dos Lipídeos , Masculino , Peroxidação de Lipídeos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
3.
Front Biosci (Landmark Ed) ; 29(6): 209, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38940024

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a prevalent condition characterized by hepatic fat accumulation, often progressing to severe liver injury, for which approved treatments are currently lacking. This study explores the potential therapeutic impact of alpha-lipoic acid (ALA), a natural compound crucial in lipid metabolism, on NAFLD using an in vitro model. METHODS: HepG2 cells were treated with a palmitic acid:oleic acid (PA:OA) mixture, representing a cellular model of steatosis. Subsequent treatment with ALA at concentrations of 1 µM and 5 µM aimed to evaluate its effects on lipid content and metabolism. Real-time polymerase chain reaction (PCR), BODIPY staining, cytofluorimetric analysis, and lipidomics were used to assess gene expression, lipid droplet accumulation, and fatty acid profiles. RESULTS: Our results showed that ALA significantly reduced lipid droplets in PA:OA-treated HepG2 cells, with a concentration-dependent effect. Analysis of fatty acid profiles demonstrated a decrease in palmitic acid levels with ALA treatment, while oleic acid reduction was observed only at the higher concentration. Moreover, ALA modulated the expression of genes involved in cholesterol biosynthesis and low-density lipoprotein (LDL) metabolism, indicating a potential role in lipid homeostasis. Further insights into molecular mechanisms revealed that ALA modulated peroxisome proliferator activated receptors (PPARs), specifically PPAR-alpha and PPAR-gamma, involved in fatty acid metabolism and insulin sensitivity. Finally, ALA counteracted the overexpression of thermogenic genes induced by exogenous fatty acids, suggesting a regulatory role in energy dissipation pathways. CONCLUSION: In conclusion, this study highlights ALA as a therapeutic agent in mitigating lipid accumulation and dysregulation in NAFLD.


Assuntos
Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica , Ácido Oleico , Ácido Palmítico , Ácido Tióctico , Humanos , Ácido Tióctico/farmacologia , Células Hep G2 , Metabolismo dos Lipídeos/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Ácido Oleico/farmacologia , Ácido Oleico/metabolismo , Ácido Palmítico/farmacologia , Ácido Palmítico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Ácidos Graxos/metabolismo , PPAR gama/metabolismo , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/efeitos dos fármacos , PPAR alfa/metabolismo , PPAR alfa/genética , Proteína Desacopladora 2/metabolismo , Proteína Desacopladora 2/genética
4.
Antioxidants (Basel) ; 12(9)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37760077

RESUMO

Hypertension and derived cardiovascular disease (CVD) are among the leading causes of death worldwide. Increased oxidative stress and inflammatory state are involved in different alterations in endothelial functions that contribute to the onset of CVD. Polyphenols, and in particular anthocyanins, have aroused great interest for their antioxidant effects and their cardioprotective role. However, anthocyanins are rarely detected in blood serum because they are primarily metabolized by the gut microbiota. This review presents studies published to date that report the main results from clinical studies on the cardioprotective effects of anthocyanins and the role of the gut microbiota in the metabolism and bioavailability of anthocyanins and their influence on the composition of the microbiota. Even if it seems that anthocyanins have a significant effect on vascular health, more studies are required to better clarify which molecules and doses show vascular benefits without forgetting the crucial role of the microbiota.

5.
Metabolites ; 13(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37512586

RESUMO

Tumor onset and its progression are strictly linked to its metabolic rewiring on the basis of the Warburg effect. In this context, fumarate emerged as a putative oncometabolite mediating cancer progression. Fumarate accumulation is usually driven by fumarate hydratase (FH) loss of function, the enzyme responsible for the reversible conversion of fumarate into malate. Fumarate accumulation acts as a double edge sword: on one hand it takes part in the metabolic rewiring of cancer cells, while on the other it also plays a crucial role in chromatin architecture reorganization. The latter is achieved by competing with a-ketoglutarate-dependent enzymes, eventually altering the cellular methylome profile, which in turn leads to its transcriptome modeling. Furthermore, in recent years, it has emerged that FH has an ability to recruit DNA double strand breaks. The accumulation of fumarate into damaged sites might also determine the DNA repair pathway in charge for the seizure of the lesion, eventually affecting the mutational state of the cells. In this work, we aimed to review the current knowledge on the role of fumarate as an oncometabolite orchestrating the cellular epigenetic landscape and DNA repair machinery.

6.
Front Nutr ; 10: 1175022, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396131

RESUMO

Background: The consumption of 100% fruit juices has not been associated with substantial detrimental outcomes in population studies and may even contribute to improving the cardiometabolic profile if included in a healthy balanced diet. The main contributors to such potential beneficial effects include vitamins, minerals, and likely the (poly)phenol content. This study aimed to investigate whether the (poly)phenols contained in 100% fruit juices may mediate their effects on cardiometabolic risk factors based on published randomized controlled trials (RCT). Methods: A systematic search in PubMed/MEDLINE and Embase, updated till the end of October 2022, was carried out to identify RCT providing quantitative data on (poly)phenol content in 100% fruit juices and used as an intervention to improve cardiometabolic parameters such as blood lipids, glucose, and blood pressure. Meta-regression analysis was performed to calculate the effect of the intervention [expressed as standardized mean difference and 95% confidence intervals (CI)] using the (poly)phenol content as moderator. Results: A total of 39 articles on RCT investigating the effects of 100% fruit juices on cardiometabolic risk factors reporting data on total (poly)phenol and anthocyanin content were included in the analysis. Total (poly)phenol content was substantially unrelated to any outcome investigated. In contrast, each 100 mg per day increase in anthocyanins was related to 1.53 mg/dL decrease in total cholesterol (95% CI, -2.83, -0.22, p = 0.022) and 1.94 mg/dL decrease in LDL cholesterol (95% CI, -3.46, -0.42, p = 0.012). No other potential mediating effects of anthocyanins on blood triglycerides, glucose, systolic and diastolic pressure were found, while a lowering effect on HDL cholesterol after excluding one outlier study was observed. Discussion: In conclusion, the present study showed that anthocyanins may mediate the potential beneficial effects of some 100% fruit juices on some blood lipids. Increasing the content of anthocyanins through specific fruit varieties or plant breeding could enhance the health benefits of 100% fruit juices.

7.
Life (Basel) ; 13(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36836615

RESUMO

Chronic myeloid leukemia (CML), BCR-ABL1-positive, is classified as a myeloproliferative characterized by Philadelphia chromosome/translocation t(9;22) and proliferating granulocytes. Despite the clinical success of tyrosine kinase inhibitors (TKi) agents in the treatment of CML, most patients have minimal residual disease contained in the bone marrow microenvironment, within which stromal cells assume a pro-inflammatory phenotype that determines their transformation in cancer-associated fibroblasts (CAF) which, in turn can play a fundamental role in resistance to therapy. Insulin-like Growth Factor Binding Protein-6 (IGFBP-6) is expressed during tumor development, and is involved in immune-escape and inflammation as well, providing a potential additional target for CML therapy. Here, we aimed at investigating the role of IGFBP-6/SHH/TLR4 axis in TKi response. We used a CML cell line, LAMA84-s, and healthy bone marrow stromal cells, HS-5, in mono- or co-culture. The two cell lines were treated with Dasatinib and/or IGFBP-6, and the expression of inflammatory markers was tested by qRT-PCR; furthermore, expression of IGFBP-6, TLR4 and Gli1 were evaluated by Western blot analysis and immumocytochemistry. The results showed that both co-culture and Dasatinib exposure induce inflammation in stromal and cancer cells so that they modulate the expression of TLR4, and these effects were more marked following IGFBP-6 pre-treatment suggesting that this molecule may confer resistance through the inflammatory processes. This phenomenon was coupled with sonic hedgehog (SHH) signaling. Indeed, our data also demonstrate that HS-5 treatment with PMO (an inducer of SHH) induces significant modulation of TLR4 and overexpression of IGFPB-6 suggesting that the two pathways are interconnected with each other and with the TLR-4 pathway. Finally, we demonstrated that pretreatment with IGFBP-6 and/or PMO restored LAMA-84 cell viability after treatment with Dasatinib, suggesting that both IGFBP-6 and SHH are involved in the resistance mechanisms induced by the modulation of TLR-4, thus indicating that the two pathways may be considered as potential therapeutic targets.

8.
Pharmaceutics ; 14(12)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36559338

RESUMO

The growing interest in natural bioactive molecules, as an approach to many pathological contexts, is widely justified by the necessity to overcome the disadvantageous benefit-risk ratio related to traditional therapies. Among them, mangiferin (MGF) shows promising beneficial properties such as antioxidant, anti-inflammatory, and immunomodulatory effects. In this study, we aimed to investigate the antioxidant and anti-inflammatory properties of MGF on lipopolysaccharide (LPS)-induced lung NCI-H292 cells, focusing on its role against COVID-19 adsorption. In order to obtain this information, cells treated with LPS, with or without MGF, were analyzed performing wound healing, gene expression of inflammatory cytokines, GSH quantification, and JC-1 staining. Moreover, the inhibition of viral adsorption was evaluated microbiologically and the results were further confirmed by molecular docking analysis. In this regard, MGF downregulates the expression of several inflammatory factors, enhances GSH levels, promotes the wound healing rate, and restores the mitochondrial dysfunction caused by LPS. In addition, MGF significantly inhibits SARS-CoV-2 adsorption as shown by the gene expression of ACE2 and TMPRSS-2, and furtherly confirmed by microbiological and molecular modeling evaluation. Although more investigations are still needed, all data obtained constitute a solid background, demonstrating the cytoprotective role of MGF in inflammatory mechanisms including COVID-19 infection.

9.
Pathol Res Pract ; 237: 154038, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35932496

RESUMO

Colorectal cancer (CRC) is one of the most common cancers in the world. Here, we undertook an analysis of microarray datasets consisting of colon biopsies of healthy subjects and of patients affected by CRC, in order to analyze the expression levels of Chitinase domain-containing protein 1 (CHID1) and to correlate them with the clinical data available in the datasets. Analysis of expression levels showed a significant increase of CHID1 in CRC biopsies compared to the mucosa of healthy subjects. Patients' stratification by TNM staging revealed significant increases in CHID1 expression levels as the disease progressed. Furthermore, we found that mutated BRAF patients exhibit higher levels of CHID1 expression. Patients with a poor surviving prognosis at 5 years expressed high levels of CHID1 compared to wild-type. The histochemical analysis carried out by the Human Protein Atlas web tool documented moderate to strong-intensity staining detection of CHID1 protein in CRC biopsies. Furthermore, CRC patients were selected and clustered into two groups, high and low CHID1 expression levels (HCEL and LCEL). We obtained two signatures, the genes significant positive (GSPC-CHID1) and negative (GSNC-CHID1) correlated to CHID1 expression levels. The genomic deconvolution analysis between the GSPC-CHID1, GSNC-CHID1, and 17 cell immunological signatures, highlighted the potential infiltration of Macrophages M0 in HCEL patients, and potential infiltration of Macrophages M1 cells in LCEL patients. In addition, the signature GSPC-CHID1 expressed unfavorable genes to the CRC patient's survival. Mirror results were obtained for the GSNC-CHID1 signature. From the outcome of our investigation, it is possible to conclude that HCEL are associated with an unfavorable prognosis for CRC patients.


Assuntos
Quitinases , Neoplasias Colorretais , Humanos , Taxa de Sobrevida , Neoplasias Colorretais/patologia , Quitinases/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Prognóstico , Macrófagos/patologia , Proteínas de Transporte/genética
10.
Antioxidants (Basel) ; 11(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35883804

RESUMO

It is well recognized that functional foods rich in antioxidants and antiinflammation agents including polyphenols, probiotics/prebiotics, and bioactive compounds have been found to have positive effects on the aging process. In particular, fruits play an important role in regular diet, promoting good health and longevity. In this study, we investigated on biological properties of extract obtained from Mangifera indica L. leaves in preclinical in vitro models. Specifically, the profile and content of bioactive compounds, the antimicrobial potential toward food spoilage and pathogenic bacterial species, and the eventually protective effect in inflammation were examined. Our findings revealed that MLE was rich in polyphenols, showing a content exclusively in the subclass of benzophenone/xanthone metabolites, and these phytochemical compounds demonstrated the highest antioxidant capacity and greatest in vitro antibacterial activity toward different bacterial species such as Bacillus cereus, B. subtilis, Pseudomonas fluorescens, Staphylococcus aureus, and St. haemolyticus. Furthermore, our data showed an in vitro anti-inflammatory, antioxidant, and antifibrotic activity.

11.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36613471

RESUMO

Uveal melanoma (UM), the most common primary intraocular cancer in adults, is among the tumors with poorer prognosis. Recently, the role of the oncometabolite lactate has become attractive due to its role as hydroxycarboxylic acid receptor 1 (HCAR1) activator, as an epigenetic modulator inducing lysine residues lactylation and, of course, as a glycolysis end-product, bridging the gap between glycolysis and oxidative phosphorylation. The aim of the present study was to dissect in UM cell line (92.1) the role of lactate as either a metabolite or a signaling molecule, using the known modulators of HCAR1 and of lactate transporters. Our results show that lactate (20 mM) resulted in a significant decrease in cell proliferation and migration, acting and switching cell metabolism toward oxidative phosphorylation. These results were coupled with increased euchromatin content and quiescence in UM cells. We further showed, in a clinical setting, that an increase in lactate transporters MCT4 and HCAR1 is associated with a spindle-shape histological type in UM. In conclusion, our results suggest that lactate metabolism may serve as a prognostic marker of UM progression and may be exploited as a potential therapeutic target.


Assuntos
Melanoma , Neoplasias Uveais , Humanos , Ácido Láctico/metabolismo , Melanoma/metabolismo , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Uveais/patologia , Linhagem Celular Tumoral
12.
J Clin Med ; 10(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34884183

RESUMO

Multiple properties of lactoferrin have been reported in the literature so far. Decades of in vitro and in vivo studies have demonstrated the important antimicrobial, anti-inflammatory, anti-oxidant, and immunomodulating properties. It suggests the use of lactoferrin as an effective and safe option for the treatment of several common disorders. Herein, we show the applications of lactoferrin in clinical practice, highlighting its evidence-based capacities for the treatment of heterogeneous disorders, such as allergic, gastrointestinal, and respiratory diseases, and hematologic, oncologic, gynecologic, dermatologic, and dental disorders. Moreover, the widespread use of lactoferrin in neonatology is summarized here. As a result of its antiviral properties, lactoferrin has also been proposed as a valid option for the treatment for COVID-19 patients. Here, the uses of lactoferrin in clinical practice as a new, safe, and evidence-based treatment for many types of disorders are summarized.

13.
Biomolecules ; 11(6)2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205698

RESUMO

In order to maintain redox homeostasis, non-small-cell lung cancer (NSCLC) increases the activation of many antioxidant systems, including the heme-oxygenase (HO) system. The overexpression of HO-1 has been often associated with chemoresistance and tumor aggressiveness. Our results clearly showed an overexpression of the HO-1 protein in A549 NSCLC cell lines compared to that in non-cancerous cells. Thus, we hypothesized that "off-label" use of tin mesoporphyrin, a well-known HO activity inhibitor clinically used for neonatal hyperbilirubinemia, has potential use as an anti-cancer agent. The pharmacological inhibition of HO activity caused a reduction in cell proliferation and migration of A549. SnMP treatment caused an increase in oxidative stress, as demonstrated by the upregulation of reactive oxygen species (ROS) and the depletion of glutathione (GSH) content. To support these data, Western blot analysis was performed to analyze glucose-6-phosphate dehydrogenase (G6PD), TP53-induced glycolysis and the apoptosis regulator (TIGAR), and the glutamate cysteine ligase catalytic (GCLC) subunit, as they represent the main regulators of the pentose phosphate pathway (PPP) and glutathione synthesis, respectively. NCI-H292, a subtype of the NSCLC cell line, did not respond to SnMP treatment, possibly due to low basal levels of HO-1, suggesting a cellular-dependent antitumorigenic effect. Altogether, our results suggest HO activity inhibition may represent a potential target for selective chemotherapy in lung cancer subtypes.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células/efeitos dos fármacos , Glutationa/metabolismo , Heme Oxigenase-1/metabolismo , Neoplasias Pulmonares , Metaloporfirinas/farmacologia , Células A549 , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Glutamato-Cisteína Ligase/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteína Supressora de Tumor p53/metabolismo
14.
Exp Cell Res ; 395(2): 112204, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32735892

RESUMO

BACKGROUND: SARS-CoV2, the agent responsible for the current pandemic, is also causing respiratory distress syndrome (RDS), hyperinflammation and high mortality. It is critical to dissect the pathogenetic mechanisms in order to reach a targeted therapeutic approach. METHODS: In the present investigation, we evaluated the effects of SARS-CoV2 on human bronchial epithelial cells (HBEC). We used RNA-seq datasets available online for identifying SARS-CoV2 potential genes target on human bronchial epithelial cells. RNA expression levels and potential cellular gene pathways have been analyzed. In order to identify possible common strategies among the main pandemic viruses, such as SARS-CoV2, SARS-CoV1, MERS-CoV, and H1N1, we carried out a hypergeometric test of the main genes transcribed in the cells of the respiratory tract exposed to these viruses. RESULTS: The analysis showed that two mechanisms are highly regulated in HBEC: the innate immunity recruitment and the disassembly of cilia and cytoskeletal structure. The granulocyte colony-stimulating factor (CSF3) and dynein heavy chain 7, axonemal (DNAH7) represented respectively the most upregulated and downregulated genes belonging to the two mechanisms highlighted above. Furthermore, the carcinoembryonic antigen-related cell adhesion molecule 7 (CEACAM7) that codifies for a surface protein is highly specific of SARS-CoV2 and not for SARS-CoV1, MERS-CoV, and H1N1, suggesting a potential role in viral entry. In order to identify potential new drugs, using a machine learning approach, we highlighted Flunisolide, Thalidomide, Lenalidomide, Desoximetasone, xylazine, and salmeterol as potential drugs against SARS-CoV2 infection. CONCLUSIONS: Overall, lung involvement and RDS could be generated by the activation and down regulation of diverse gene pathway involving respiratory cilia and muscle contraction, apoptotic phenomena, matrix destructuration, collagen deposition, neutrophil and macrophages recruitment.


Assuntos
Brônquios/metabolismo , Infecções por Coronavirus/genética , Redes Reguladoras de Genes , Pneumonia Viral/genética , Mucosa Respiratória/metabolismo , Transcriptoma , Brônquios/patologia , COVID-19 , Antígeno Carcinoembrionário/genética , Antígeno Carcinoembrionário/metabolismo , Infecções por Coronavirus/metabolismo , Descoberta de Drogas/métodos , Dineínas/genética , Dineínas/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Fator Estimulador de Colônias de Granulócitos/genética , Fator Estimulador de Colônias de Granulócitos/metabolismo , Humanos , Imunidade Inata , Aprendizado de Máquina , Pandemias , Pneumonia Viral/metabolismo , Regulação para Cima
15.
Int J Mol Sci ; 21(15)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32727075

RESUMO

Brain and other nervous system cancers are the 10th leading cause of death worldwide. Genome instability, cell cycle deregulation, epigenetic mechanisms, cytoarchitecture disassembly, redox homeostasis as well as apoptosis are involved in carcinogenesis. A diet rich in fruits and vegetables is inversely related with the risk of developing cancer. Several studies report that cruciferous vegetables exhibited antiproliferative effects due to the multi-pharmacological functions of their secondary metabolites such as isothiocyanate sulforaphane deriving from the enzymatic hydrolysis of glucosinolates. We treated human astrocytoma 1321N1 cells for 24 h with different concentrations (0.5, 1.25 and 2.5% v/v) of sulforaphane plus active myrosinase (Rapha Myr®) aqueous extract (10 mg/mL). Cell viability, DNA fragmentation, PARP-1 and γH2AX expression were examined to evaluate genotoxic effects of the treatment. Cell cycle progression, p53 and p21 expression, apoptosis, cytoskeleton morphology and cell migration were also investigated. In addition, global DNA methylation, DNMT1 mRNA levels and nuclear/mitochondrial sirtuins were studied as epigenetic biomarkers. Rapha Myr® exhibited low antioxidant capability and exerted antiproliferative and genotoxic effects on 1321N1 cells by blocking the cell cycle, disarranging cytoskeleton structure and focal adhesions, decreasing the integrin α5 expression, renewing anoikis and modulating some important epigenetic pathways independently of the cellular p53 status. In addition, Rapha Myr® suppresses the expression of the oncogenic p53 mutant protein. These findings promote Rapha Myr® as a promising chemotherapeutic agent for integrated cancer therapy of human astrocytoma.


Assuntos
Anoikis/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Astrocitoma/metabolismo , Metilação de DNA/efeitos dos fármacos , DNA de Neoplasias/metabolismo , Proteínas de Neoplasias/metabolismo , Sirtuínas/metabolismo , Astrocitoma/tratamento farmacológico , Astrocitoma/patologia , Linhagem Celular Tumoral , Glicosídeo Hidrolases/farmacologia , Humanos , Isotiocianatos/farmacologia , Sulfóxidos
16.
J Clin Med ; 9(8)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707883

RESUMO

Polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF) are rare hematological conditions known as myeloproliferative neoplasms (MPNs). They are characterized for being BCR-ABL negative malignancies and affected patients often present with symptoms which can significantly impact their quality of life. MPNs are characterized by a clonal proliferation of an abnormal hematopoietic stem/progenitor cell. In MPNs; cells of all myeloid lineages; including those involved in the immune and inflammatory response; may belong to the malignant clone thus leading to an altered immune response and an overexpression of cytokines and inflammatory receptors; further worsening chronic inflammation. Many of these cytokines; in particular, IL-1ß and IL-18; are released in active form by activating the inflammasome complexes which in turn mediate the inflammatory process. Despite this; little is known about the functional effects of stem cell-driven inflammasome signaling in MPN pathogenesis. In this review we focused on the role of inflammatory pathway and inflammasome in MPN diseases. A better understanding of the inflammatory-state-driving MPNs and of the role of the inflammasome may provide new insights on possible therapeutic strategies.

17.
J Clin Med ; 9(5)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455831

RESUMO

Central nervous system tumors are the most common pediatric solid tumors and account for 20%-25% of all childhood malignancies. Several lines of evidence suggest that brain tumors show altered redox homeostasis that triggers the activation of various survival pathways, leading to disease progression and chemoresistance. Among these pathways, heme oxygenase-1 (HO-1) plays an important role. HO-1 catalyzes the enzymatic degradation of heme with the simultaneous release of carbon monoxide (CO), ferrous iron (Fe2+), and biliverdin. The biological effects of HO-1 in tumor cells have been shown to be cell-specific since, in some tumors, its upregulation promotes cell cycle arrest and cellular death, whereas, in other neoplasms, it is associated with tumor survival and progression. This review focuses on the role of HO-1 in central nervous system malignancies and the possibility of exploiting such a target to improve the outcome of well-established therapeutic regimens. Finally, several studies show that HO-1 overexpression is involved in the development and resistance of brain tumors to chemotherapy and radiotherapy, suggesting the use of HO-1 as an innovative therapeutic target to overcome drug resistance. The following keywords were used to search the literature related to this topic: nuclear factor erythroid 2 p45-related factor 2, heme oxygenase, neuroblastoma, medulloblastoma, meningioma, astrocytoma, oligodendroglioma, glioblastoma multiforme, and gliomas.

18.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331228

RESUMO

Primary myelofibrosis (PMF) is a rare myeloproliferative neoplasm characterized by stem-cell-derived clonal over-proliferation of mature myeloid lineages, bone marrow fibrosis, osteosclerosis, defective erythropoiesis, and pro-inflammatory cytokine over-expression. The aim of the present study was to highlight possible differences in the transcriptome among CD34+ cells from peripheral blood (PB) of PMF patients. Therefore, we merged two microarray datasets of healthy control subjects and PMF (34 JAK2V617F MUTATED and 28 JAK2 wild-type). The GO analysis of upregulated genes revealed enrichment for JAK2/STAT1 pathway gene set in PB CD34+ cells of PMF patients with and without the JAK2V617F mutation comparing to the healthy control subjects, and in particular a significant upregulation of immunoproteasome (IP)-belonging genes as PSMB8, PSMB9, and PSMB10. A more detailed investigation of the IFN-gamma (IFNG) pathway also revealed that IFNG, IRF1, and IFNGR2 were significantly upregulated in PB CD34+ cells of PMF patients carrying the mutation for JAK2V617F compared to JAK2 wild-type PMF patients. Finally, we showed an upregulation of HLA-class I genes in PB CD34+ cells from PMF JAK2V617F mutated patients compared to JAK2 wild-type and healthy controls. In conclusion, our results demonstrate that IPs and IFNG pathways could be involved in PMF disease and in particular in patients carrying the JAK2V617F mutation.


Assuntos
Imunomodulação/genética , Janus Quinase 2/genética , Mutação , Mielofibrose Primária/genética , Complexo de Endopeptidases do Proteassoma/genética , Alelos , Antígenos/metabolismo , Antígenos CD34/metabolismo , Células Cultivadas , Biologia Computacional/métodos , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Estudos de Associação Genética , Humanos , Modelos Biológicos , Mielofibrose Primária/diagnóstico , Mielofibrose Primária/imunologia , Mielofibrose Primária/metabolismo , Prognóstico , Complexo de Endopeptidases do Proteassoma/metabolismo , Curva ROC , Transdução de Sinais
19.
Cancers (Basel) ; 12(2)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019102

RESUMO

Multiple myeloma (MM) is a clonal B-cell malignancy characterized by an accumulation of plasma cells (PC) in the bone marrow (BM), leading to bone loss and BM failure. Osteolytic bone disease is a common manifestation observed in MM patients and represents the most severe cause of morbidity, leading to progressive skeletal damage and disabilities. Pathogenetic mechanisms of MM bone disease are closely linked to PCs and osteoclast (OCs) hyperactivity, coupled with defective osteoblasts (OBs) function that is unable to counteract bone resorption. The aim of the present study was to investigate the effects of Ixazomib, a third-generation proteasome inhibitor, on osteoclastogenesis and osteogenic differentiation. We found that Ixazomib was able to reduce differentiation of human monocytes into OCs and to inhibit the expression of OC markers when added to the OC medium. Concurrently, Ixazomib was able to stimulate osteogenic differentiation of human mesenchymal stromal cells (MSCs), increasing osteogenic markers, either alone or in combination with the osteogenic medium. Given the key role of Sonic Hedgehog (SHH) signaling in bone homeostasis, we further investigated Ixazomib-induced SHH pathway activation. This set of experiments showed that Ixazomib, but not Bortezomib, was able to bind the Smoothened (SMO) receptor leading to nuclear translocation of GLI1 in human MSCs. Moreover, we demonstrated that PCs act as GLI1 suppressors on MSCs, thus reducing the potential of MSCs to differentiate in OBs. In conclusion, our data demonstrated that Ixazomib regulates bone remodeling by decreasing osteoclastogenesis and prompting osteoblast differentiation via the canonical SHH signaling pathway activation, thus, representing a promising therapeutic option to improve the complex pathological condition of MM patients.

20.
Mol Biol Rep ; 47(3): 1949-1964, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32056044

RESUMO

Non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related death mainly due to its high metastatic rate. Impairment of redox homeostasis mechanisms has been previously described in NSCLC and is associated with the disease itself as well as with comorbidities such as smoking. The aim of the present in vitro study was to evaluate the effect of selective and non-competitive inhibition of heme oxygenase-1 (HO-1) on cancer redox homeostasis with particular regards to glutathione (GSH) metabolism related enzymes. NSCLC cell line (A549) was treated with the HO-1 activity inhibitor VP13/47 (10 µM) and we further evaluated cell viability, apoptosis, mitochondrial dysfunction and oxidative stress. Our results showed that VP13/47 significantly reduced HO-1 expression and total HO activity thus, resulting in a significant reduction of cell viability, proliferation and increased apoptosis, mitochondrial dysfunction and oxidative stress. Consistently with increased oxidative stress, we also showed that reduced GSH was significantly decreased and such effect was also accompanied by a significant downregulation of the enzymes involved in its biosynthesis. Taken all together our results show that selective HO-1 inhibition significantly impairs NSCLC progression and may represent a possible pharmacological strategy for new chemotherapy agents.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Inibidores Enzimáticos/farmacologia , Glutationa/metabolismo , Heme Oxigenase-1/antagonistas & inibidores , Hidrocarbonetos Bromados/farmacologia , Imidazóis/farmacologia , Neoplasias Pulmonares/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Inibidores Enzimáticos/química , Humanos , Hidrocarbonetos Bromados/química , Imidazóis/química , Neoplasias Pulmonares/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA