Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3745, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702304

RESUMO

Early childhood tumours arise from transformed embryonic cells, which often carry large copy number alterations (CNA). However, it remains unclear how CNAs contribute to embryonic tumourigenesis due to a lack of suitable models. Here we employ female human embryonic stem cell (hESC) differentiation and single-cell transcriptome and epigenome analysis to assess the effects of chromosome 17q/1q gains, which are prevalent in the embryonal tumour neuroblastoma (NB). We show that CNAs impair the specification of trunk neural crest (NC) cells and their sympathoadrenal derivatives, the putative cells-of-origin of NB. This effect is exacerbated upon overexpression of MYCN, whose amplification co-occurs with CNAs in NB. Moreover, CNAs potentiate the pro-tumourigenic effects of MYCN and mutant NC cells resemble NB cells in tumours. These changes correlate with a stepwise aberration of developmental transcription factor networks. Together, our results sketch a mechanistic framework for the CNA-driven initiation of embryonal tumours.


Assuntos
Diferenciação Celular , Variações do Número de Cópias de DNA , Proteína Proto-Oncogênica N-Myc , Crista Neural , Neuroblastoma , Humanos , Neuroblastoma/genética , Neuroblastoma/patologia , Crista Neural/metabolismo , Crista Neural/patologia , Feminino , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Aberrações Cromossômicas , Células-Tronco Embrionárias Humanas/metabolismo , Transcriptoma , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
2.
ACS Appl Mater Interfaces ; 16(2): 2154-2165, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38181419

RESUMO

Extracellular matrices interface with cells to promote cell growth and tissue development. Given this critical role, matrix mimetics are introduced to enable biomedical materials ranging from tissue engineering scaffolds and tumor models to organoids for drug screening and implant surface coatings. Traditional microscopy methods are used to evaluate such materials in their ability to support exploitable cell responses, which are expressed in changes in cell proliferation rates and morphology. However, the physical imaging methods do not capture the chemistry of cells at cell-matrix interfaces. Herein, we report hyperspectral imaging to map the chemistry of human primary and embryonic stem cells grown on matrix materials, both native and artificial. We provide the statistical analysis of changes in lipid and protein content of the cells obtained from infrared spectral maps to conclude matrix morphologies as a major determinant of biochemical cell responses. The study demonstrates an effective methodology for evaluating bespoke matrix materials directly at cell-matrix interfaces.


Assuntos
Materiais Biocompatíveis , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Matriz Extracelular/química , Células-Tronco Embrionárias
3.
Cell Stem Cell ; 29(12): 1624-1636, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459966

RESUMO

It is well established that human pluripotent stem cells (hPSCs) can acquire genetic and epigenetic changes during culture in vitro. Given the increasing use of hPSCs in research and therapy and the vast expansion in the number of hPSC lines available for researchers, the International Society for Stem Cell Research has recognized the need to reassess quality control standards for ensuring the genetic integrity of hPSCs. Here, we summarize current knowledge of the nature of recurrent genetic and epigenetic variants in hPSC culture, the methods for their detection, and what is known concerning their effects on cell behavior in vitro or in vivo. We argue that the potential consequences of low-level contamination of cell therapy products with cells bearing oncogenic variants are essentially unknown at present. We highlight the key challenges facing the field with particular reference to safety assessment of hPSC-derived cellular therapeutics.


Assuntos
Epigenômica , Células-Tronco Pluripotentes , Humanos , Pesquisa com Células-Tronco , Oncogenes , Epigênese Genética
4.
Curr Protoc ; 2(11): e606, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36426882

RESUMO

Human pluripotent stem cells (hPSCs) can be grown in culture indefinitely, making them a valuable tool for use in basic biology, disease modeling, and regenerative medicine. However, over prolonged periods in culture, hPSCs tend to acquire genomic aberrations that confer growth advantages, similar to those seen in some cancers. Monitoring the genomic stability of cultured hPSCs is critical to ensuring their efficacy and safety as a therapeutic tool. Most commonly employed methods for monitoring of hPSC genomes are cytogenetic methods, such as G-banding. Nonetheless, such methods have limited resolution and sensitivity for detecting mosaicism. Single nucleotide polymorphism (SNP) array platforms are a potential alternative that could improve detection of abnormalities. Here, we outline protocols for SNP array whole-genome screening of hPSCs. Moreover, we detail the procedure for assessing the SNP array's sensitivity in detecting low-level mosaic copy-number changes. We show that mosaicism can be confidently identified in samples only once they contain 20% variants, although samples containing 10% variants typically display enough variation to warrant further investigation and confirmation, for example by using a more sensitive targeted method. Finally, we highlight the advantages and limitations of SNP arrays, including a cost comparison of SNP arrays versus other commonly employed methods for detection of genetic changes in hPSC cultures. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: DNA sample preparation for SNP arrays Basic Protocol 2: SNP array hybridization, washing, and scanning Basic Protocol 3: SNP array data analysis Support Protocol: Assessment of SNP array sensitivity for detection of mosaicism.


Assuntos
Células-Tronco Pluripotentes , Polimorfismo de Nucleotídeo Único , Humanos , Polimorfismo de Nucleotídeo Único/genética , Análise Citogenética , Mosaicismo , Hibridização de Ácido Nucleico
5.
Curr Protoc ; 2(5): e435, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35621694

RESUMO

Cell-cell interactions are required for development and homeostasis in multicellular organisms from insects to mammals. A critical process governed by these interactions is cell competition, which functions throughout development to control tissue composition by eliminating cells that possess a lower fitness status than their neighbors. Human pluripotent stem cells (hPSCs) are a key biological tool in modeling human development and offer further potential as a source of clinically relevant cell populations for regenerative medicine applications. Recently, cell competition has been demonstrated in hPSC cultures and during induced pluripotent stem cell reprogramming. In turn, these findings suggest that hPSCs can be used as a tool to study and model cell-cell interactions during different stages of development and disease. Here, we provide a panel of protocols optimized for hPSCs to investigate the potential role that cell competition may have in determining the fate and composition of cell populations during culture. The protocols entail assessment of the competitive phenotype and the mode through which cell competition may lead to elimination of less-fit cells from mosaic cultures with fitter counterparts. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Electroporation of hPSCs to establish a fluorescent reference cell line Support Protocol 1: Single-cell dissociation of hPSCs Support Protocol 2: Single-cell cloning of fluorescently labeled hPSCs Basic Protocol 2: Separate culture and co-culture proliferation assays Basic Protocol 3: Assessing levels of apoptosis in hPSC cultures using flow cytometry Basic Protocol 4: Transwell assay Support Protocol 3: Immunohistochemistry and image quantification of cleaved caspase-3 Basic Protocol 5: Cell confrontation assay Basic Protocol 6: Cell compression assay Basic Protocol 7: Time-lapse imaging to assess mechanical extrusion.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Animais , Competição entre as Células , Citometria de Fluxo/métodos , Humanos , Mamíferos , Medicina Regenerativa
6.
Methods Mol Biol ; 2416: 267-284, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34870842

RESUMO

The presence of genetic changes in human pluripotent stem cells (hPSCs) can affect their behavior and impact on the utility of hPSC-based applications in research and clinic. The spectrum of spontaneously arising genetic abnormalities in hPSCs is wide and ranges from numerical and structural chromosomal anomalies down to point mutations. The detection of genetic changes in hPSCs is confounded by the fact that no single method detects all types of abnormalities with the same accuracy and sensitivity, therefore necessitating the use of a combination of different methods. Here, we provide detailed protocols for two methods commonly utilized for the detection of genetic changes in naïve and primed hPSCs: karyotyping by G-banding and fluorescent in situ hybridization (FISH).


Assuntos
Células-Tronco Pluripotentes , Diferenciação Celular , Aberrações Cromossômicas , Bandeamento Cromossômico , Humanos , Hibridização in Situ Fluorescente , Cariotipagem
7.
Dev Cell ; 56(17): 2455-2470.e10, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34407428

RESUMO

The appearance of genetic changes in human pluripotent stem cells (hPSCs) presents a concern for their use in research and regenerative medicine. Variant hPSCs that harbor recurrent culture-acquired aneuploidies display growth advantages over wild-type diploid cells, but the mechanisms that yield a drift from predominantly wild-type to variant cell populations remain poorly understood. Here, we show that the dominance of variant clones in mosaic cultures is enhanced through competitive interactions that result in the elimination of wild-type cells. This elimination occurs through corralling and mechanical compression by faster-growing variants, causing a redistribution of F-actin and sequestration of yes-associated protein (YAP) in the cytoplasm that induces apoptosis in wild-type cells. YAP overexpression or promotion of YAP nuclear localization in wild-type cells alleviates their "loser" phenotype. Our results demonstrate that hPSC fate is coupled to mechanical cues imposed by neighboring cells and reveal that hijacking this mechanism allows variants to achieve clonal dominance in cultures.


Assuntos
Competição entre as Células/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Células-Tronco Pluripotentes/citologia , Proteínas de Sinalização YAP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Humanos , Fatores de Transcrição/metabolismo
8.
Stem Cells Dev ; 30(11): 578-586, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33757297

RESUMO

Copy number variants (CNVs) are genomic rearrangements implicated in numerous congenital and acquired diseases, including cancer. The appearance of culture-acquired CNVs in human pluripotent stem cells (PSCs) has prompted concerns for their use in regenerative medicine. A particular problem in PSC is the frequent occurrence of CNVs in the q11.21 region of chromosome 20. However, the exact mechanism of origin of this amplicon remains elusive due to the difficulty in delineating its sequence and breakpoints. Here, we have addressed this problem using long-read Nanopore sequencing of two examples of this CNV, present as duplication and as triplication. In both cases, the CNVs were arranged in a head-to-tail orientation, with microhomology sequences flanking or overlapping the proximal and distal breakpoints. These breakpoint signatures point to a mechanism of microhomology-mediated break-induced replication in CNV formation, with surrounding Alu sequences likely contributing to the instability of this genomic region.


Assuntos
Sequenciamento por Nanoporos , Células-Tronco Pluripotentes , Cromossomos , Variações do Número de Cópias de DNA/genética , Reparo do DNA , Humanos
9.
Nat Rev Mol Cell Biol ; 21(12): 715-728, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32968234

RESUMO

In the 20 years since human embryonic stem cells, and subsequently induced pluripotent stem cells, were first described, it has become apparent that during long-term culture these cells (collectively referred to as 'pluripotent stem cells' (PSCs)) can acquire genetic changes, which commonly include gains or losses of particular chromosomal regions, or mutations in certain cancer-associated genes, especially TP53. Such changes raise concerns for the safety of PSC-derived cellular therapies for regenerative medicine. Although acquired genetic changes may not be present in a cell line at the start of a research programme, the low sensitivity of current detection methods means that mutations may be difficult to detect if they arise but are present in only a small proportion of the cells. In this Review, we discuss the types of mutations acquired by human PSCs and the mechanisms that lead to their accumulation. Recent work suggests that the underlying mutation rate in PSCs is low, although they also seem to be particularly susceptible to genomic damage. This apparent contradiction can be reconciled by the observations that, in contrast to somatic cells, PSCs are programmed to die in response to genomic damage, which may reflect the requirements of early embryogenesis. Thus, the common genetic variants that are observed are probably rare events that give the cells with a selective growth advantage.


Assuntos
Evolução Clonal/genética , Acúmulo de Mutações , Células-Tronco Pluripotentes/metabolismo , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/normas , Diferenciação Celular/genética , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/tendências , Células Cultivadas , Evolução Clonal/fisiologia , Células-Tronco Embrionárias Humanas/fisiologia , Humanos , Mutação/fisiologia , Células-Tronco Pluripotentes/fisiologia
10.
Stem Cell Reports ; 15(3): 557-565, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32857978

RESUMO

The enteric nervous system (ENS) is derived primarily from the vagal neural crest, a migratory multipotent cell population emerging from the dorsal neural tube between somites 1 and 7. Defects in the development and function of the ENS cause a range of enteric neuropathies, including Hirschsprung disease. Little is known about the signals that specify early ENS progenitors, limiting progress in the generation of enteric neurons from human pluripotent stem cells (hPSCs) to provide tools for disease modeling and regenerative medicine for enteric neuropathies. We describe the efficient and accelerated generation of ENS progenitors from hPSCs, revealing that retinoic acid is critical for the acquisition of vagal axial identity and early ENS progenitor specification. These ENS progenitors generate enteric neurons in vitro and, following in vivo transplantation, achieved long-term colonization of the ENS in adult mice. Thus, hPSC-derived ENS progenitors may provide the basis for cell therapy for defects in the ENS.


Assuntos
Sistema Nervoso Entérico/citologia , Crista Neural/citologia , Células-Tronco Neurais/citologia , Tretinoína/farmacologia , Animais , Linhagem Celular , Humanos , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Nervo Vago/citologia
11.
Stem Cell Reports ; 14(6): 1009-1017, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32413278

RESUMO

Human pluripotent stem cells (PSCs) are subject to the appearance of recurrent genetic variants on prolonged culture. We have now found that, compared with isogenic differentiated cells, PSCs exhibit evidence of considerably more DNA damage during the S phase of the cell cycle, apparently as a consequence of DNA replication stress marked by slower progression of DNA replication, activation of latent origins of replication, and collapse of replication forks. As in many cancers, which, like PSCs, exhibit a shortened G1 phase and DNA replication stress, the resulting DNA damage may underlie the higher incidence of abnormal and abortive mitoses in PSCs, resulting in chromosomal non-dysjunction or cell death. However, we have found that the extent of DNA replication stress, DNA damage, and consequent aberrant mitoses can be substantially reduced by culturing PSCs in the presence of exogenous nucleosides, resulting in improved survival, clonogenicity, and population growth.


Assuntos
Replicação do DNA , Instabilidade Genômica , Nucleosídeos/farmacologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Linhagem Celular , Meios de Cultura/química , Meios de Cultura/farmacologia , Citoproteção , Dano ao DNA , Humanos , Mitose , Nucleosídeos/análise , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo
12.
Stem Cell Reports ; 12(3): 557-571, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30773485

RESUMO

Human pluripotent stem cells (hPSCs) are susceptible to numerical and structural chromosomal alterations during long-term culture. We show that mitotic errors occur frequently in hPSCs and that prometaphase arrest leads to very rapid apoptosis in undifferentiated but not in differentiated cells. hPSCs express high levels of proapoptotic protein NOXA in undifferentiated state. Knocking out NOXA by CRISPR or upregulation of the anti-apoptosis gene BCL-XL significantly reduced mitotic cell death, allowing the survival of aneuploid cells and the formation of teratomas significantly larger than their wild-type parental hPSCs. These results indicate that the normally low threshold of apoptosis in hPSCs can safeguard their genome integrity by clearing cells undergoing abnormal division. The amplification of BCL2L1 on chromosome 20q11.21, a frequent mutation in hPSCs, although not directly oncogenic, reduces the sensitivity of hPSCs to damage caused by erroneous mitosis and increases the risk of gaining aneuploidy.


Assuntos
Apoptose/genética , Sobrevivência Celular/genética , Mitose/genética , Mutação/genética , Células-Tronco Pluripotentes/fisiologia , Aneuploidia , Proteínas Reguladoras de Apoptose , Morte Celular/genética , Diferenciação Celular/genética , Células Cultivadas , Humanos , Proteína bcl-X/genética
13.
Adv Exp Med Biol ; 1007: 225-239, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28840560

RESUMO

Chronic tissue and organ failure caused by an injury, disease, ageing or congenital defects represents some of the most complex therapeutic challenges and poses a significant financial healthcare burden. Regenerative medicine strategies aim to fulfil the unmet clinical need by restoring the normal tissue function either through stimulating the endogenous tissue repair or by using transplantation strategies to replace the missing or defective cells. Stem cells represent an essential pillar of regenerative medicine efforts as they provide a source of progenitors or differentiated cells for use in cell replacement therapies. Whilst significant leaps have been made in controlling the stem cell fates and differentiating them to cell types of interest, transitioning bespoke cellular products from an academic environment to off-the-shelf clinical treatments brings about a whole new set of challenges which encompass manufacturing, regulatory and funding issues. Notwithstanding the need to resolve such issues before cell replacement therapies can benefit global healthcare, mounting progress in the field has highlighted regenerative medicine as a realistic prospect for treating some of the previously incurable conditions.


Assuntos
Doenças Neurodegenerativas/terapia , Medicina Regenerativa , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco , Animais , Humanos
15.
Protein Cell ; 5(8): 569-79, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24899134

RESUMO

Owing to a unique set of attributes, human pluripotent stem cells (hPSCs) have emerged as a promising cell source for regenerative medicine, disease modeling and drug discovery. Assurance of genetic stability over long term maintenance of hPSCs is pivotal in this endeavor, but hPSCs can adapt to life in culture by acquiring non-random genetic changes that render them more robust and easier to grow. In separate studies between 12.5% and 34% of hPSC lines were found to acquire chromosome abnormalities over time, with the incidence increasing with passage number. The predominant genetic changes found in hPSC lines involve changes in chromosome number and structure (particularly of chromosomes 1, 12, 17 and 20), reminiscent of the changes observed in cancer cells. In this review, we summarize current knowledge on the causes and consequences of aneuploidy in hPSCs and highlight the potential links with genetic changes observed in human cancers and early embryos. We point to the need for comprehensive characterization of mechanisms underpinning both the acquisition of chromosomal abnormalities and selection pressures, which allow mutations to persist in hPSC cultures. Elucidation of these mechanisms will help to design culture conditions that minimize the appearance of aneuploid hPSCs. Moreover, aneuploidy in hPSCs may provide a unique platform to analyse the driving forces behind the genome evolution that may eventually lead to cancerous transformation.


Assuntos
Aneuploidia , Transformação Celular Neoplásica/genética , Neoplasias/genética , Células-Tronco Pluripotentes/patologia , Animais , Diferenciação Celular , Transformação Celular Neoplásica/patologia , Humanos , Neoplasias/patologia
16.
Stem Cell Res ; 11(3): 1022-36, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23941963

RESUMO

Genomic abnormalities may accumulate in human embryonic stem cells (hESCs) during in vitro maintenance. Characterization of the mechanisms enabling survival and expansion of abnormal hESCs is important due to consequences of genetic changes for the therapeutic utilization of stem cells. Furthermore, these cells provide an excellent model to study transformation in vitro. We report here that the histone deacetylase proteins, HDAC1 and HDAC2, are increased in karyotypically abnormal hESCs when compared to their normal counterparts. Importantly, similar to many cancer cell lines, we found that HDAC inhibitors repress proliferation of the karyotypically abnormal hESCs, whereas normal cells are more resistant to the treatment. The decreased proliferation correlates with downregulation of HDAC1 and HDAC2 proteins, induction of the proliferation inhibitor, cyclin-dependent kinase inhibitor 1A (CDKN1A), and altered regulation of tumor suppressor protein Retinoblastoma 1 (RB1). Through genome-wide transcriptome analysis we have identified genes with altered expression and responsiveness to HDAC inhibition in abnormal cells. Most of these genes are linked to severe developmental and neurological diseases and cancers. Our results highlight the importance of epigenetic mechanisms in the regulation of genomic stability of hESCs, and provide valuable candidates for targeted and selective growth inhibition of karyotypically abnormal cells.


Assuntos
Aberrações Cromossômicas , Células-Tronco Embrionárias/efeitos dos fármacos , Regulação da Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação para Baixo/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Instabilidade Genômica , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/antagonistas & inibidores , Histona Desacetilase 2/metabolismo , Humanos , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Osteopontina/genética , Osteopontina/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
17.
Breast Cancer Res ; 14(3): R86, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22632416

RESUMO

INTRODUCTION: The majority of deaths from breast cancer are a result of metastases; however, little is understood about the genetic alterations underlying their onset. Genetic profiling has identified the adhesion molecule plakoglobin as being three-fold reduced in expression in primary breast tumors that have metastasized compared with nonmetastatic tumors. In this study, we demonstrate a functional role for plakoglobin in the shedding of tumor cells from the primary site into the circulation. METHODS: We investigated the effects of plakoglobin knockdown on breast cancer cell proliferation, migration, adhesion, and invasion in vitro and on tumor growth and intravasation in vivo. MCF7 and T47D cells were stably transfected with miRNA sequences targeting the plakoglobin gene, or scramble vector. Gene and protein expression was monitored by quantitative polymerase chain reaction (qPCR) and Western blot. Cell proliferation, adhesion, migration, and invasion were measured by cell counting, flow cytometry, and scratch and Boyden Chamber assays. For in vivo experiments, plakoglobin knockdown and control cells were inoculated into mammary fat pads of mice, and tumor growth, shedding of tumor cells into the bloodstream, and evidence of metastatic bone lesions were monitored with caliper measurement, flow cytometry, and microcomputed tomography (µCT), respectively. RESULTS: Plakoglobin and γ-catenin expression were reduced by more than 80% in all knockdown cell lines used but were unaltered after transfection with the scrambled sequence. Reduced plakoglobin resulted in significantly increased in MCF7 and T47D cell proliferation in vitro and in vivo, compared with control, with significantly more tumor cells being shed into the bloodstream of mice bearing plakoglobin knockdown tumors. In addition, plakoglobin knockdown cells showed a >250% increase in invasion through basement membrane and exhibited reduced cell-to-cell adhesion compared with control cells. CONCLUSION: Decreased plakoglobin expression increases the invasive behavior of breast cancer cells. This is the first demonstration of a functional role for plakoglobin/γ-catenin in the metastatic process, indicating that this molecule may represent a target for antimetastatic therapies.


Assuntos
Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Células Neoplásicas Circulantes , gama Catenina/metabolismo , Animais , Adesão Celular , Comunicação Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Neoplasias Mamárias Animais/genética , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Interferência de RNA , RNA Interferente Pequeno , gama Catenina/genética
18.
Int J Dev Biol ; 56(4): 197-206, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22562197

RESUMO

The pluripotent potential of embryonic stem cells has often seen them touted as the future of regenerative medicine. The road to any therapeutic success however, must stretch back to teratocarcinoma, the tumour from which pluripotent stem cells (embryonal carcinoma cells) were first derived. This 2011 meeting in Cardiff acted as a historical perspective from which the impact of embryonal carcinoma cell research on the present pluripotent stem cell landscape could be observed, with many of the early luminaries in this field still very active. The meeting addressed the genetic and epigenetic make-up of pluripotent stem cells, the mechanisms which control their fate, and their relationship to the early embryo proper. With each speaker tasked with revisiting previous questions, this meeting demonstrated how far has been travelled, yet how far is left to go.


Assuntos
Células-Tronco Embrionárias/patologia , Células-Tronco Pluripotentes/patologia , Teratocarcinoma/patologia , Pesquisa Biomédica/métodos , Pesquisa Biomédica/tendências , Células-Tronco de Carcinoma Embrionário/metabolismo , Células-Tronco de Carcinoma Embrionário/patologia , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Proteínas de Homeodomínio/genética , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes/metabolismo , Teratocarcinoma/genética
19.
Cryobiology ; 63(3): 298-305, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22027383

RESUMO

Human embryonic stem cells (hESCs) can be maintained as undifferentiated cells in vitro and induced to differentiate into a variety of somatic cell types. Thus, hESCs provide a source of differentiated cell types that could be used to replace diseased cells of a tissue. The efficient cryopreservation of hESCs is important for establishing effective stem cell banks, however, conventional slow freezing methods usually lead to low rates of recovery after thawing cells and their replating in culture. We have established a method for recovering cryopreserved hESCs using pinacidil and compared it to a method that employs the ROCK inhibitor Y-27632. We show that pinacidil is similar to Y-27632 in promoting survival of hESCs after cryopreservation. The cells exhibited normal hESC morphology, retained a normal karyotype, and expressed characteristic hESC markers (OCT4, SSEA3, SSEA4 and TRA-1-60). Moreover, the cells retained the capacity to differentiate into derivatives of all three embryonic germ layers as demonstrated by differentiation through embryoid body formation. Pinacidil has been used for many years as a vasodilator drug to treat hypertension and its manufacture and traceability are well defined. It is also considerably cheaper than Y-27632. Thus, the use of pinacidil offers an efficient method for recovery of cryopreserved dissociated human ES cells.


Assuntos
Anti-Hipertensivos/farmacologia , Criopreservação/métodos , Corpos Embrioides/citologia , Células-Tronco Embrionárias/citologia , Pinacidil/farmacologia , Amidas/farmacologia , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Antígenos Glicosídicos Associados a Tumores/genética , Antígenos Glicosídicos Associados a Tumores/metabolismo , Biomarcadores/análise , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Corpos Embrioides/efeitos dos fármacos , Corpos Embrioides/metabolismo , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Citometria de Fluxo , Congelamento , Expressão Gênica , Humanos , Cariotipagem , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteoglicanas/genética , Proteoglicanas/metabolismo , Piridinas/farmacologia , Antígenos Embrionários Estágio-Específicos/genética , Antígenos Embrionários Estágio-Específicos/metabolismo
20.
J Biomol Screen ; 16(6): 603-17, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21593487

RESUMO

Disentangling the complex interactions that govern stem cell fate choices of self-renewal, differentiation, or death presents a formidable challenge. Image-based phenotype-driven screening meets this challenge by providing means for rapid testing of many small molecules simultaneously. Pluripotent embryonal carcinoma (EC) cells offer a convenient substitute for embryonic stem (ES) cells in such screens because they are simpler to maintain and control. The authors developed an image-based screening assay to identify compounds that affect survival or differentiation of the human EC stem cell line NTERA2 by measuring the effect on cell number and the proportion of cells expressing a pluripotency-associated marker SSEA3. A pilot screen of 80 kinase inhibitors identified several compounds that improved cell survival or induced differentiation. The survival compounds Y-27632, HA-1077, and H-8 all strongly inhibit the kinases ROCK and PRK2, highlighting the important role of these kinases in EC cell survival. Two molecules, GF109203x and rottlerin, induced EC differentiation. The effects of rottlerin were also investigated in human ES cells. Rottlerin inhibited the self-renewal ability of ES cells, caused the cell cycle arrest, and repressed the expression of pluripotency-associated genes.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco de Carcinoma Embrionário/citologia , Células-Tronco de Carcinoma Embrionário/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Inibidores de Proteínas Quinases/farmacologia , Acetofenonas/farmacologia , Benzopiranos/farmacologia , Diferenciação Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células-Tronco de Carcinoma Embrionário/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Processamento de Imagem Assistida por Computador , Fenótipo , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA