Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Toxicol ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834875

RESUMO

Aflatoxin B1 (AFB1) is a pro-carcinogenic compound bioactivated in the liver by cytochromes P450 (CYPs). In mammals, CYP1A and CYP3A are responsible for AFB1 metabolism, with the formation of the genotoxic carcinogens AFB1-8,9-epoxide and AFM1, and the detoxified metabolite AFQ1. Due to climate change, AFB1 cereals contamination arose in Europe. Thus, cattle, as other farm animals fed with grains (pig, sheep and broiler), are more likely exposed to AFB1 via feed with consequent release of AFM1 in milk, posing a great concern to human health. However, knowledge about bovine CYPs involved in AFB1 metabolism is still scanty. Therefore, CYP1A1- and CYP3A74-mediated molecular mechanisms of AFB1 hepatotoxicity were here dissected. Molecular docking of AFB1 into CYP1A1 model suggested AFB1 8,9-endo- and 8,9-exo-epoxide, and AFM1 formation, while docking of AFB1 into CYP3A74 pointed to AFB1 8,9-exo-epoxide and AFQ1 synthesis. To biologically confirm these predictions, CYP1A1 and CYP3A74 knockout (KO) BFH12 cell lines were exposed to AFB1. LC-MS/MS investigations showed the abolished production of AFM1 in CYP1A1 KO cells and the strong increase of parent AFB1 in CYP3A74 KO cells; the latter result, coupled to a decreased cytotoxicity, suggested the major role of CYP3A74 in AFB1 8,9-exo-epoxide formation. Finally, RNA-sequencing analysis indirectly proved lower AFB1-induced cytotoxic effects in engineered cells versus naïve ones. Overall, this study broadens the knowledge on AFB1 metabolism and hepatotoxicity in cattle, and it provides the weight of evidence that CYP1A1 and CYP3A74 inhibition might be exploited to reduce AFM1 and AFBO synthesis, AFB1 toxicity, and AFM1 milk excretion.

2.
Toxins (Basel) ; 15(9)2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37755981

RESUMO

Aflatoxin B1 (AFB1) induces lipid peroxidation and mortality in bovine foetal hepatocyte-derived cells (BFH12), with underlying transcriptional perturbations associated mainly with cancer, cellular damage, inflammation, bioactivation, and detoxification pathways. In this cell line, curcumin and resveratrol have proven to be effective in mitigating AFB1-induced toxicity. In this paper, we preliminarily assessed the potential anti-AFB1 activity of a natural polyphenol, quercetin (QUE), in BFH12 cells. To this end, we primarily measured QUE cytotoxicity using a WST-1 reagent. Then, we pre-treated the cells with QUE and exposed them to AFB1. The protective role of QUE was evaluated by measuring cytotoxicity, transcriptional changes (RNA-sequencing), lipid peroxidation (malondialdehyde production), and targeted post-transcriptional modifications (NQO1 and CYP3A enzymatic activity). The results demonstrated that QUE, like curcumin and resveratrol, reduced AFB1-induced cytotoxicity and lipid peroxidation and caused larger transcriptional variations than AFB1 alone. Most of the differentially expressed genes were involved in lipid homeostasis, inflammatory and immune processes, and carcinogenesis. As for enzymatic activities, QUE significantly reverted CYP3A variations induced by AFB1, but not those of NQO1. This study provides new knowledge about key molecular mechanisms involved in QUE-mediated protection against AFB1 toxicity and encourages in vivo studies to assess QUE's bioavailability and beneficial effects on aflatoxicosis.


Assuntos
Curcumina , Quercetina , Animais , Bovinos , Quercetina/farmacologia , Resveratrol/farmacologia , Aflatoxina B1/toxicidade , Citocromo P-450 CYP3A , Curcumina/farmacologia , Hepatócitos , Fígado
3.
Animals (Basel) ; 14(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38200793

RESUMO

Several studies have shown the importance of vitamin D3 supplementation in small animals. In dogs, a low vitamin D3 status is associated not only with bone metabolism but also with different kinds of disorders, such as congestive heart failure, gastrointestinal diseases, chronic kidney diseases, and some types of cancer. However, it is crucial to maintain balance and monitor the introduction of this essential nutrient through the diet because over-supplementation can result in toxicity. Due to the clinical importance of assessing the vitamin D3 status in small animal patients, a quick, simple, and highly performing analytical method for its measurement is needed. In this study, we describe the development of a novel liquid chromatography-tandem mass spectrometry method for 25-hydroxyvitamin D3 quantification in canine serum. The approach was successfully validated following current European guidelines, proving excellent linearity (R2 always ≥0.996), accuracy (always within ±13%) and precision (always <10%). The application of the validated approach to samples collected from 40 healthy dogs made possible the definition of a reliable reference interval for 25-hydroxyvitamin D3, the main biomarker of vitamin D3. In addition, variations below 5% in the results obtained quantifying the same samples using a water-based calibration curve demonstrated that a surrogate matrix may be used without affecting data accuracy. Thanks to its simplicity, the proposed technique represents a useful tool for supporting clinical routine and investigating correlations between serum concentrations of this metabolite and multiple diseases. Additionally, it could enable the monitoring of supplementation in small animal patients in veterinary clinical practice.

4.
Toxins (Basel) ; 14(7)2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35878168

RESUMO

Due to the climatic change, an increase in aflatoxin B1 (AFB1) maize contamination has been reported in Europe. As an alternative to mineral binders, natural phytogenic compounds are increasingly used to counteract the negative effects of AFB1 in farm animals. In cows, even low dietary AFB1 concentrations may result in the milk excretion of the genotoxic carcinogen metabolite aflatoxin M1 (AFM1). In this study, we tested the ability of dietary turmeric powder (TP), an extract from Curcuma longa (CL) rich in curcumin and curcuminoids, in reducing AFM1 mammary excretion in Holstein-Friesian cows. Both active principles are reported to inhibit AFM1 hepatic synthesis and interact with drug transporters involved in AFB1 absorption and excretion. A crossover design was applied to two groups of cows (n = 4 each) with a 4-day washout. Animals received a diet contaminated with low AFB1 levels (5 ± 1 µg/kg) for 10 days ± TP supplementation (20 g/head/day). TP treatment had no impact on milk yield, milk composition or somatic cell count. Despite a tendency toward a lower average AFM1 milk content in the last four days of the treatment (below EU limits), no statistically significant differences with the AFB1 group occurred. Since the bioavailability of TP active principles may be a major issue, further investigations with different CL preparations are warranted.


Assuntos
Aflatoxina M1 , Leite , Aflatoxina B1/metabolismo , Aflatoxina M1/análise , Aflatoxinas , Ração Animal/análise , Animais , Bovinos , Curcuma/metabolismo , Feminino , Contaminação de Alimentos/análise , Lactação , Leite/química , Pós/metabolismo
5.
Toxins (Basel) ; 14(7)2022 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-35878173

RESUMO

Aflatoxin B1 (AFB1) is a major food safety concern, threatening the health of humans and animals. Bentonite (BEN) is an aluminosilicate clay used as a feed additive to reduce AFB1 presence in contaminated feedstuff. So far, few studies have characterized BEN toxicity and efficacy in vitro. In this study, cytotoxicity (WST-1 test), the effects on cell permeability (trans-epithelial electrical resistance and lucifer yellow dye incorporation), and transcriptional changes (RNA-seq) caused by BEN, AFB1 and their combination (AFB1 + BEN) were investigated in Caco-2 cells. Up to 0.1 mg/mL, BEN did not affect cell viability and permeability, but it reduced AFB1 cytotoxicity; however, at higher concentrations, BEN was cytotoxic. As to RNA-seq, 0.1 mg/mL BEN did not show effects on cell transcriptome, confirming that the interaction between BEN and AFB1 occurs in the medium. Data from AFB1 and AFB1 + BEN suggested AFB1 provoked most of the transcriptional changes, whereas BEN was preventive. The most interesting AFB1-targeted pathways for which BEN was effective were cell integrity, xenobiotic metabolism and transporters, basal metabolism, inflammation and immune response, p53 biological network, apoptosis and carcinogenesis. To our knowledge, this is the first study assessing the in vitro toxicity and whole-transcriptomic effects of BEN, alone or in the presence of AFB1.


Assuntos
Aflatoxina B1 , Bentonita , Aflatoxina B1/metabolismo , Ração Animal/análise , Animais , Bentonita/metabolismo , Bentonita/toxicidade , Células CACO-2 , Enterócitos/metabolismo , Humanos , Transcriptoma
6.
Toxins (Basel) ; 14(7)2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35878242

RESUMO

Aflatoxin B1 (AFB1) is a food contaminant metabolized mostly in the liver and leading to hepatic damage. Livestock species are differently susceptible to AFB1, but the underlying mechanisms of toxicity have not yet been fully investigated, especially in ruminants. Thus, the aim of the present study was to better characterize the molecular mechanism by which AFB1 exerts hepatotoxicity in cattle. The bovine fetal hepatocyte cell line (BFH12) was exposed for 48 h to three different AFB1 concentrations (0.9 µM, 1.8 µM and 3.6 µM). Whole-transcriptomic changes were measured by RNA-seq analysis, showing significant differences in the expression of genes mainly involved in inflammatory response, oxidative stress, drug metabolism, apoptosis and cancer. As a confirmatory step, post-translational investigations on genes of interest were implemented. Cell death associated with necrosis rather than apoptosis events was noted. As far as the toxicity mechanism is concerned, a molecular pathway linking inflammatory response and oxidative stress was postulated. Toll-Like Receptor 2 (TLR2) activation, consequent to AFB1 exposure, triggers an intracellular signaling cascade involving a kinase (p38ß MAPK), which in turn allows the nuclear translocation of the activator protein-1 (AP-1) and NF-κB, finally leading to the release of pro-inflammatory cytokines. Furthermore, a p38ß MAPK negative role in cytoprotective genes regulation was postulated. Overall, our investigations improved the actual knowledge on the molecular effects of this worldwide relevant natural toxin in cattle.


Assuntos
Aflatoxina B1 , Receptor 2 Toll-Like , Aflatoxina B1/metabolismo , Animais , Bovinos , Hepatócitos , Fígado , Estresse Oxidativo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Transcriptoma
7.
Antioxidants (Basel) ; 10(8)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34439473

RESUMO

Aflatoxin B1 (AFB1) is a natural feed and food contaminant classified as a group I carcinogen for humans. In the dairy industry, AFB1 and its derivative, AFM1, are of concern for the related economic losses and their possible presence in milk and dairy food products. Among its toxic effects, AFB1 can cause oxidative stress. Thus, dietary supplementation with natural antioxidants has been considered among the strategies to mitigate AFB1 presence and its toxicity. Here, the protective role of resveratrol (R) has been investigated in a foetal bovine hepatocyte cell line (BFH12) exposed to AFB1, by measuring cytotoxicity, transcriptional changes (RNA sequencing), and targeted post-transcriptional modifications (lipid peroxidation, NQO1 and CYP3A enzymatic activity). Resveratrol reversed the AFB1-dependent cytotoxicity. As for gene expression, when administered alone, R induced neglectable changes in BFH12 cells. Conversely, when comparing AFB1-exposed cells with those co-incubated with R+AFB1, greater transcriptional variations were observed (i.e., 840 DEGs). Functional analyses revealed that several significant genes were involved in lipid biosynthesis, response to external stimulus, drug metabolism, and inflammatory response. As for NQO1 and CYP3A activities and lipid peroxidation, R significantly reverted variations induced by AFB1, mostly corroborating and/or completing transcriptional data. Outcomes of the present study provide new knowledge about key molecular mechanisms involved in R antioxidant-mediated protection against AFB1 toxicity.

8.
Front Vet Sci ; 8: 603695, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959647

RESUMO

Introduction: To assess drug plasma levels, preanesthetic sedation, cardiopulmonary effects during anesthesia and recovery in horses anesthetized with isoflurane combined with medetomidine or xylazine. Study design: Prospective blinded randomized clinical study. Animals: Sixty horses undergoing elective surgery. Methods: Thirty minutes after administration of antibiotics, flunixine meglumine or phenylbutazone and acepromazine horses received medetomidine 7 µg kg-1 (group MED) or xylazine 1.1 mg kg-1 (group XYL) slowly intravenously (IV) and sedation was assessed 3 min later. Anesthesia was induced with ketamine/diazepam and maintained with isoflurane in oxygen/air and medetomidine 3.5 µg kg-1 h-1 or xylazine 0.69 mg kg-1 h-1. Ringer's acetate 10 mL kg-1 h-1 and dobutamine were administered to maintain normotension. All horses were mechanically ventilated to maintain end-tidal carbon dioxide pressures at 45 ± 5 mmHg (5.3-6.7 kPa). Heart rate (HR), invasive arterial blood pressures, inspired and expired gas compositions, pH, arterial blood gases, electrolytes, lactate and glucose were measured. For recovery all horses received intramuscular morphine 0.1 mg kg-1 and medetomidine 2 µg kg-1 or xylazine 0.3 mg kg-1 IV. Recovery was timed and scored using three different scoring systems. Plasma samples to measure medetomidine and xylazine concentrations were collected at predetermined timepoints. Repeatedly measured parameters were analyzed using a two-way repeated-measures analysis of variance for differences between groups and over time; p < 0.05 was considered statistically significant. Results: Mean arterial blood pressures (MAP) stayed within normal ranges but were higher (p = 0.011) in group XYL despite significant lower dobutamine doses (p = 0.0003). Other measured parameters were within clinically acceptable ranges. Plasma levels were at steady state during anesthesia (MED 2.194 ± 0.073; XYL 708 ± 18.791 ng mL-1). During recovery lateral recumbency (MED 42.7 ± 2.51; XYL 34.3 ± 2.63 min; p = 0.027) and time to standing (MED 62.0 ± 2.86; XYL 48.8 ± 3.01 min; p = 0.002) were significantly shorter in group XYL compared to group MED. Recovery scores did not differ significantly between groups. Conclusion and Clinical Relevance: In horses anesthetized with isoflurane and medetomidine or xylazine, xylazine maintained higher MAP, reduced the dobutamine consumption and recovery time, whilst overall recovery quality was unaffected.

9.
Antioxidants (Basel) ; 9(11)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33137966

RESUMO

Aflatoxin B1 (AFB1) toxicity in livestock and human beings is a major economic and health concern. Natural polyphenolic substances with antioxidant properties have proven to be effective in ameliorating AFB1-induced toxicity. Here we assessed the potential anti-AFB1 activity of curcumin (pure curcumin, C, and curcumin from Curcuma longa, CL) in a bovine fetal hepatocyte-derived cell line (BFH12). First, we measured viability of cells exposed to AFB1 in presence or absence of curcumin treatment. Then, we explored all the transcriptional changes occurring in AFB1-exposed cells cotreated with curcumin. Results demonstrated that curcumin is effective in reducing AFB1-induced toxicity, decreasing cells mortality by approximately 30%. C and CL induced similar transcriptional changes in BFH12 exposed to AFB1, yet C treatment resulted in a larger number of significant genes compared to CL. The mitigating effects of curcuminoids towards AFB1 toxicity were mainly related to molecular pathways associated with antioxidant and anti-inflammatory response, cancer, and drug metabolism. Investigating mRNA changes induced by curcumin in cattle BFH12 cells exposed to AFB1 will help us to better characterize possible tools to reduce its consequences in this susceptible and economically important food-producing species.

10.
Toxins (Basel) ; 12(7)2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610656

RESUMO

Aflatoxins, and particularly aflatoxin B1 (AFB1), are toxic mycotoxins to humans and farm animal species, resulting in acute and chronic toxicities. At present, AFB1 is still considered a global concern with negative impacts on health, the economy, and social life. In farm animals, exposure to AFB1-contaminated feed may cause several untoward effects, liver damage being one of the most devastating ones. In the present study, we assessed in vitro the transcriptional changes caused by AFB1 in a bovine fetal hepatocyte-derived cell line (BFH12). To boost the cellular response to AFB1, cells were pre-treated with the co-planar PCB 3,3',4,4',5-pentachlorobiphenyl (PCB126), a known aryl hydrocarbon receptor agonist. Three experimental groups were considered: cells exposed to the vehicle only, to PCB126, and to PCB126 and AFB1. A total of nine RNA-seq libraries (three replicates/group) were constructed and sequenced. The differential expression analysis showed that PCB126 induced only small transcriptional changes. On the contrary, AFB1 deeply affected the cell transcriptome, the majority of significant genes being associated with cancer, cellular damage and apoptosis, inflammation, bioactivation, and detoxification pathways. Investigating mRNA perturbations induced by AFB1 in cattle BFH12 cells will help us to better understand AFB1 toxicodynamics in this susceptible and economically important food-producing species.


Assuntos
Aflatoxina B1/toxicidade , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Animais , Bovinos , Linhagem Celular , Perfilação da Expressão Gênica , Hepatócitos/metabolismo , Fígado/metabolismo , Bifenilos Policlorados/toxicidade , Transdução de Sinais
11.
Toxicol In Vitro ; 57: 174-183, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30849473

RESUMO

Aflatoxin (AF) B1, a widespread food and feed contaminant, is bioactivated by drug metabolizing enzymes (DME) to cytotoxic and carcinogenic metabolites like AFB1-epoxide and AFM1, a dairy milk contaminant. A number of natural antioxidants have been reported to afford a certain degree of protection against AFB1 (cyto)toxicity. As the mammary gland potentially participates in the generation of AFB1 metabolites, we evaluated the role of selected natural antioxidants (i.e. curcumin, quercetin and resveratrol) in the modulation of AFB1 toxicity and metabolism using a bovine mammary epithelial cell line (BME-UV1). Quercetin and, to a lesser extent, resveratrol and curcumin from Curcuma longa (all at 5 µM) significantly counteracted the AFB1-mediated impairment of cell viability (concentration range: 96-750 nM). Moreover, quercetin was able to significantly reduce the synthesis of AFM1. The quantitative PCR analysis on genes encoding for DME (phase I and II) and antioxidant enzymes showed that AFB1 caused an overall downregulation of the detoxifying systems, and mainly of GSTA1, which mediates the GSH conjugation of the AFB1-epoxide. The negative modulation of GSTA1 was efficiently reversed in the presence of quercetin, which significantly increased GSH levels as well. It is suggested that quercetin exerts its beneficial effects by depressing the bio-transformation of AFB1 and counterbalancing its pro-oxidant effects.


Assuntos
Aflatoxina B1/toxicidade , Aflatoxina M1/metabolismo , Antioxidantes/farmacologia , Células Epiteliais/efeitos dos fármacos , Animais , Bovinos , Linhagem Celular , Curcumina/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Células Epiteliais/metabolismo , Epóxido Hidrolases/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glândulas Mamárias Animais/citologia , Quercetina/farmacologia , Resveratrol/farmacologia , Transferases/genética
12.
Vet Anaesth Analg ; 44(3): 435-443, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28416162

RESUMO

OBJECTIVE: To investigate the pharmacokinetics of buprenorphine and its main active metabolite, norbuprenorphine, after administration of an intravenous loading dose followed by constant rate infusion (CRI) in dogs. STUDY DESIGN: Prospective, clinical study. ANIMALS: A total of seven healthy dogs undergoing elective ovariectomy. METHODS: Buprenorphine was administered as a loading dose (intravenous bolus of 15 µg kg-1) followed by CRI (2.5 µg kg-1 hour-1 for 6 hours). Moreover, intraoperative analgesia was supplemented by an intramuscular carprofen (4 mg kg-1) injection, administered prior to surgery, and by lidocaine, administrated through subcutaneous infiltration and through a splash on the ovarian vascular pedicle during surgery. Pain and sedation were scored for all animals throughout the 24-hour study period and rescue analgesia was administered when a visual analogue scale score was > 40 mm. Blood samples were collected from a jugular catheter at regular intervals, and plasma concentrations of buprenorphine and norbuprenorphine were determined by a validated liquid chromatography-tandem mass spectrometry method. RESULTS: Buprenorphine showed a two-compartment kinetic profile. Maximum concentration was 23.92 ± 8.64 ng mL-1 at 1 minute (maximum time); elimination half-life was 41.87 ± 17.35 minutes; area under the curve was 486.68 ± 125.66 minutes ng-1 mL-1; clearance was 33.61 ± 13.01 mL minute-1 kg-1, and volume of distribution at steady state was 1.77 ± 0.50 L kg-1. In no case was rescue analgesia required. Norbuprenorphine resulted below the lower limit of quantification in almost all samples. CONCLUSIONS AND CLINICAL RELEVANCE: The results suggest that a buprenorphine CRI can be a useful tool for providing analgesia in postoperative patients, considering its minor side effects and the advantages of a CRI compared to frequent boluses. The negligible contribution of norbuprenorphine to the therapeutic effect was confirmed.


Assuntos
Analgesia/veterinária , Analgésicos Opioides/farmacocinética , Buprenorfina/farmacocinética , Ovariectomia/veterinária , Analgésicos Opioides/administração & dosagem , Animais , Buprenorfina/administração & dosagem , Carbazóis/administração & dosagem , Cães , Feminino , Medição da Dor/veterinária , Período Pós-Operatório , Estudos Prospectivos , Fatores de Tempo
13.
MethodsX ; 3: 139-43, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27408833

RESUMO

Although budesonide is frequently used in veterinary medicine for the treatment of canine respiratory and bowel inflammatory diseases, knowledge is lacking regarding its kinetics in this species. We developed and validated a liquid chromatography-tandem mass spectrometry method for the determination of budesonide and its metabolite 16α-hydroxyprednisolone in dog plasma. The analytes were extracted by solid phase extraction and analysis was performed by high performance liquid chromatography-tandem mass spectrometry, with positive electrospray ionization.•This method allows budesonide and one of its main metabolites to be simultaneously quantified in dog plasma at fairly low concentrations.•The proposed protocol is very easy and fast to execute, without compromising analytical performances.•A small amount (0.5 mL) of plasma is required, making this approach suitable for pharmacokinetic studies also in small sized dogs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA