Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
SLAS Discov ; 29(3): 100154, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521503

RESUMO

Sorafenib is a multikinase inhibitor indicated for first-line treatment of unresectable hepatocellular carcinoma. Despite its widespread use in the clinic, the existing knowledge of sorafenib mode-of-action remains incomplete. To build upon the current understanding, we used the Cellular Thermal Shift Assay (CETSA) coupled to Mass Spectrometry (CETSA-MS) to monitor compound binding to its target proteins in the cellular context on a proteome-wide scale. Among the potential sorafenib targets, we identified aldehyde dehydrogenase 2 (ALDH2), an enzyme that plays a major role in alcohol metabolism. We validated the interaction of sorafenib with ALDH2 by orthogonal methods using pure recombinant protein, proving that this interaction is not mediated by other cellular components. Moreover, we showed that sorafenib inhibits ALDH2 activity, supporting a functional role for this interaction. Finally, we were able to demonstrate that both ALDH2 protein expression and activity were reduced in sorafenib-resistant cells compared to the parental cell line. Overall, our study allowed the identification of ALDH2 as a novel sorafenib target and sheds light on its potential role in both hepatocellular carcinoma and sorafenib resistance condition.


Assuntos
Aldeído-Desidrogenase Mitocondrial , Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteoma , Sorafenibe , Sorafenibe/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Ligação Proteica/efeitos dos fármacos
2.
Biomolecules ; 13(3)2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36979394

RESUMO

The Notch signaling ligand JAG1 is overexpressed in various aggressive tumors and is associated with poor clinical prognosis. Hence, therapies targeting oncogenic JAG1 hold great potential for the treatment of certain tumors. Here, we report the identification of specific anti-JAG1 single-chain variable fragments (scFvs), one of them endowing chimeric antigen receptor (CAR) T cells with cytotoxicity against JAG1-positive cells. Anti-JAG1 scFvs were identified from human phage display libraries, reformatted into full-length monoclonal antibodies (Abs), and produced in mammalian cells. The characterization of these Abs identified two specific anti-JAG1 Abs (J1.B5 and J1.F1) with nanomolar affinities. Cloning the respective scFv sequences in our second- and third-generation CAR backbones resulted in six anti-JAG1 CAR constructs, which were screened for JAG1-mediated T-cell activation in Jurkat T cells in coculture assays with JAG1-positive cell lines. Studies in primary T cells demonstrated that one CAR harboring the J1.B5 scFv significantly induced effective T-cell activation in the presence of JAG1-positive, but not in JAG1-knockout, cancer cells, and enabled specific killing of JAG1-positive cells. Thus, this new anti-JAG1 scFv represents a promising candidate for the development of cell therapies against JAG1-positive tumors.


Assuntos
Imunoterapia Adotiva , Anticorpos de Cadeia Única , Animais , Humanos , Imunoterapia Adotiva/métodos , Ligantes , Linhagem Celular Tumoral , Células Jurkat , Anticorpos de Cadeia Única/genética , Mamíferos/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo
3.
Cancers (Basel) ; 13(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34439228

RESUMO

The Notch-signaling ligand DLL1 has emerged as an important player and promising therapeutic target in breast cancer (BC). DLL1-induced Notch activation promotes tumor cell proliferation, survival, migration, angiogenesis and BC stem cell maintenance. In BC, DLL1 overexpression is associated with poor prognosis, particularly in estrogen receptor-positive (ER+) subtypes. Directed therapy in early and advanced BC has dramatically changed the natural course of ER+ BC; however, relapse is a major clinical issue, and new therapeutic strategies are needed. Here, we report the development and characterization of a novel monoclonal antibody specific to DLL1. Using phage display technology, we selected an anti-DLL1 antibody fragment, which was converted into a full human IgG1 (Dl1.72). The Dl1.72 antibody exhibited DLL1 specificity and affinity in the low nanomolar range and significantly impaired DLL1-Notch signaling and expression of Notch target genes in ER+ BC cells. Functionally, in vitro treatment with Dl1.72 reduced MCF-7 cell proliferation, migration, mammosphere formation and endothelial tube formation. In vivo, Dl1.72 significantly inhibited tumor growth, reducing both tumor cell proliferation and liver metastases in a xenograft mouse model, without apparent toxicity. These findings suggest that anti-DLL1 Dl1.72 could be an attractive agent against ER+ BC, warranting further preclinical investigation.

4.
N Biotechnol ; 64: 17-26, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-33992842

RESUMO

Notch signalling is a well-established oncogenic pathway, and its ligand Delta-like 1 (DLL1) is overexpressed in estrogen receptor-positive (ER+) breast cancers and associated with poor patient prognosis. Hence, DLL1 has become an interesting therapeutic target for breast cancer. Here, the development of specific functional blocking anti-DLL1 antibodies with potential activity against ER+ breast cancer cells is reported. Human DLL1 proteins, containing the essential regions for binding to the Notch receptor and Notch signalling activation, were produced and used to select specific scFv antibody fragments by phage display. Fifteen unique scFvs were identified and reformatted into full IgGs. Characterization of these antibodies by ELISA, surface plasmon resonance and flow cytometry enabled selection of three specific anti-DLL1 IgGs, sharing identical VH regions, with nM affinities. Cellular assays on ER+ breast cancer MCF-7 cells showed that one of the IgGs (IgG-69) was able to partially impair DLL1-mediated activation of the Notch pathway, as determined by Notch reporter and RT-qPCR assays, and to attenuate cell growth. Treatment of MCF-7 cells with IgG-69 reduced mammosphere formation, suggesting that it decreases the breast cancer stem cell subpopulation. These results support the use of this strategy to develop and identify potential anti-DLL1 antibodies candidates against breast cancer.


Assuntos
Neoplasias da Mama , Proteínas de Ligação ao Cálcio/imunologia , Técnicas de Visualização da Superfície Celular , Imunoglobulina G/biossíntese , Proteínas de Membrana/imunologia , Feminino , Humanos , Ligantes , Células MCF-7
5.
J Biotechnol ; 300: 70-77, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31150679

RESUMO

Adeno-associated viral vectors (AAV) for gene therapy applications are gaining momentum, with more therapies moving into later stages of clinical development and towards market approval, namely for cancer therapy. The development of cytotoxic vectors is often hampered by side effects arising when non-target cells are infected, and their production can be hindered by toxic effects of the transgene on the producing cell lines. In this study, we evaluated the potential of rAAV-mediated delivery of short hairpin RNAs (shRNA) to target basal-like breast cancer genetic vulnerabilities. Our results show that by optimizing the stoichiometry of the plasmids upon transfection and time of harvest, it is possible to increase the viral titers and quality. All rAAV-shRNA vectors obtained efficiently transduced the BLBC cell lines MDA-MB-468 and HCC1954. In MDA-MB-468, transduction with rAAV-shRNA vector targeting PSMA2 was associated with significant decrease in cell viability and apoptosis induction. Importantly, rAAV2-PSMA2 also slowed tumor growth in a BLBC mouse xenograft model, thus potentially representing a therapeutic strategy against this type of cancer.


Assuntos
Neoplasias da Mama/genética , Dependovirus/genética , Neoplasia de Células Basais/genética , RNA Interferente Pequeno/genética , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Técnicas de Silenciamento de Genes , Técnicas de Transferência de Genes/normas , Terapia Genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Neoplasia de Células Basais/patologia , Neoplasia de Células Basais/terapia , Plasmídeos , Complexo de Endopeptidases do Proteassoma/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/farmacologia , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
PLoS One ; 14(5): e0217002, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31107884

RESUMO

CONCLUSIONS: These findings provide further evidence that DLL1 exerts carcinogenic effects in BC cells. The dissimilar effects of DLL1 downregulation observed amongst MCF-7, BT474, and MDA-MB-231 cells is likely due to their distinctive genetic and biologic characteristics, suggesting that DLL1 contributes to BC through various mechanisms.


Assuntos
Neoplasias da Mama/genética , Proteínas de Ligação ao Cálcio/genética , Carcinogênese/genética , Proteínas de Membrana/genética , Receptores Notch/genética , Apoptose/genética , Neoplasias da Mama/patologia , Ciclo Celular/genética , Divisão Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , RNA Interferente Pequeno/genética , Transfecção
7.
Sci Rep ; 8(1): 12196, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111774

RESUMO

Incomplete O-glycosylation is a feature associated with malignancy resulting in the expression of truncated glycans such as the sialyl-Tn (STn) antigen. Despite all the progress in the development of potential anti-cancer antibodies, their application is frequently hindered by low specificities and cross-reactivity. In this study, a novel anti-STn monoclonal antibody named L2A5 was developed by hybridoma technology. Flow cytometry analysis showed that L2A5 specifically binds to sialylated structures on the cell surface of STn-expressing breast and bladder cancer cell lines. Moreover, immunoblotting assays demonstrated reactivity to tumour-associated O-glycosylated proteins, such as MUC1. Tumour recognition was further observed using immunohistochemistry assays, which demonstrated a high sensitivity and specificity of L2A5 mAb towards cancer tissue, using bladder and colorectal cancer tissues. L2A5 staining was exclusively tumoural, with a remarkable reactivity in invasive and metastasis sites, not detectable by other anti-STn mAbs. Additionally, it stained 20% of cases of triple-negative breast cancers, suggesting application in diseases with unmet clinical needs. Finally, the fine specificity was assessed using glycan microarrays, demonstrating a highly specific binding of L2A5 to core STn antigens and additional ability to bind 2-6-linked sialyl core-1 probes. In conclusion, this study describes a novel anti-STn antibody with a unique binding specificity that can be applied for cancer diagnostic and future development of new antibody-based therapeutic applications.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/uso terapêutico , Antígenos Glicosídicos Associados a Tumores/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Antígenos Glicosídicos Associados a Tumores/fisiologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Glicosilação , Humanos , Hibridomas , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/metabolismo , Polissacarídeos/química , Polissacarídeos/imunologia , Ácidos Siálicos/metabolismo , Neoplasias da Bexiga Urinária/patologia
8.
Protein Expr Purif ; 146: 8-16, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29366964

RESUMO

Notch signalling is an evolutionary conserved cell-to-cell communication pathway crucial for development and tissue homeostasis. Abnormal Notch signalling by mutations or deregulated expression of its receptors and/or ligands can lead to cancer making it a potential therapeutic target. Delta-like1 (DLL1) is a ligand of the Notch pathway implicated in different types of cancer, including breast cancer. Herein, we produced rhDLL1-DE3, a novel soluble form of DLL1 protein, which contains the DSL domain and EGF1-3 repeats critical for Notch pathway activation. cDNA fragments of human DLL1, encoding truncated versions of DLL1 with regions required to activate Notch receptors, were cloned and expressed as histidine-fused proteins in bacterial and mammalian cells. Expression tests in mammalian cells showed almost exclusively expression of the rhDLL1-DE3 protein form comprising the minimal binding regions DSL to EGF3 to Notch receptors. The highest yield of rhDLL1-DE3 was obtained from E. coli inclusion bodies. The produced protein, with purity higher than 95% bound to human Notch1 recombinant protein, by both Biolayer interferometry and ELISA assays. Cellular assays revealed rhDLL1-DE3 was biologically active as it increased expression of Notch-dependent genes in inducible pluripotent and breast cancer cells. Moreover, rhDLL1-DE3 allowed the generation of polyclonal antibodies by immunization that efficiently recognized DLL1 proteins by immunoblot, and caused a significant decrease of Notch1 expression in MCF7 breast cancer cells. The rhDLL1-DE3 protein might thus be used for Notch pathway activation and to generate anti-DLL1 monoclonal antibodies by immunization or phage display technology to unveil the effect of DLL1 in breast cancer.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Receptor Notch1/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Anticorpos/imunologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Proteínas de Ligação ao Cálcio , Linhagem Celular , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Células MCF-7 , Proteínas de Membrana/química , Proteínas de Membrana/imunologia , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo
9.
N Biotechnol ; 39(Pt B): 215-221, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28842360

RESUMO

Notch signalling is an evolutionarily highly conserved pathway that plays a crucial role during embryonic development and in tissue homeostasis maintenance during adult life. Abnormal Notch signalling has been implicated in several human genetic disorders and in multiple facets of cancer biology, including stem cell renewal, cancer cell proliferation, tumor angiogenesis and metastasis. Hence, Notch signalling has gained increasing attention as a potential therapeutic target for many disorders. γ-secretase inhibitors (GSIs) were the first therapeutics used to inhibit pathological Notch signalling in various diseases, notably in oncology. Although GSIs show antitumor activity in advanced and metastatic cancer, the lack of substrate specificity and associated toxicity constitute significant limitations to their therapeutic use. Antibodies have emerged as powerful therapeutics due to their specificity, efficacy and safety, and remarkable success has been achieved with their use in immune-mediated diseases and cancer. This review describes the importance of the Notch pathway and its involvement in several pathologies, with a special focus on breast cancer. Moreover, the role of Notch and its ligands as promising therapeutic targets will be addressed, as well as therapeutic strategies being pursued for Notch modulation.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/terapia , Receptores Notch/metabolismo , Feminino , Humanos , Modelos Biológicos , Terapia de Alvo Molecular , Transdução de Sinais
10.
Biotechnol J ; 11(12): 1513-1524, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27491899

RESUMO

Retroviral particles are expensive to manufacture, mostly due to the downstream processing steps which result in low recoveries (≈30%) and concentration factors. In this work, a dodecapeptide phage-display library was panned against retrovirus like particles expressing the envelope protein Ampho4070A (VLPs-AMPHO) and VLPs without the target protein, used as a negative control (VLPs). A depletion/selection panning protocol was successfully used to deal with the structural complexity of the target, and a total of three distinct peptide sequences displaying preferential binding towards VLPs-AMPHO were found. Peptide 3 (CAAALAKPHTENHLLT), which appeared as one lead candidate, was synthesized and immobilized onto two purification matrices, cross-linked agarose and magnetic particles. The matrices selectively bound VLPs-AMPHO and in both cases recovery yields higher than 90% were obtained when employing mild elution conditions, while maintaining viral particle morphology and size.


Assuntos
Biblioteca de Peptídeos , Peptídeos/metabolismo , Retroviridae , Vírion/isolamento & purificação , Vírion/metabolismo , Cromatografia de Afinidade/métodos , Peptídeos/química , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/química , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Vírion/química
11.
Biomolecules ; 5(3): 1783-809, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26270678

RESUMO

The carbohydrate antigens Tn and sialyl-Tn (STn) are expressed in most carcinomas and usually absent in healthy tissues. These antigens have been correlated with cancer progression and poor prognosis, and associated with immunosuppressive microenvironment. Presently they are used in clinical trials as therapeutic vaccination, but with limited success due to their low immunogenicity. Alternatively, anti-Tn and/or STn antibodies may be used to harness the immune system against tumor cells. Whilst the development of antibodies against these antigens had a boost two decades ago for diagnostic use, so far no such antibody entered into clinical trials. Possible limitations are the low specificity and efficiency of existing antibodies and that novel antibodies are still necessary. The vast array of methodologies available today will allow rapid antibody development and novel formats. Following the advent of hybridoma technology, the immortalization of human B cells became a methodology to obtain human monoclonal antibodies with better specificity. Advances in molecular biology including phage display technology for high throughput screening, transgenic mice and more recently molecularly engineered antibodies enhanced the field of antibody production. The development of novel antibodies against Tn and STn taking advantage of innovative technologies and engineering techniques may result in innovative therapeutic antibodies for cancer treatment.


Assuntos
Anticorpos/imunologia , Antígenos Glicosídicos Associados a Tumores/imunologia , Animais , Anticorpos/genética , Anticorpos/uso terapêutico , Engenharia Genética , Humanos , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA