Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant J ; 117(4): 1191-1205, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37997015

RESUMO

Polyploidy is an important evolutionary process throughout eukaryotes, particularly in flowering plants. Duplicated gene pairs (homoeologs) in allopolyploids provide additional genetic resources for changes in molecular, biochemical, and physiological mechanisms that result in evolutionary novelty. Therefore, understanding how divergent genomes and their regulatory networks reconcile is vital for unraveling the role of polyploidy in plant evolution. Here, we compared the leaf transcriptomes of recently formed natural allotetraploids (Tragopogon mirus and T. miscellus) and their diploid parents (T. porrifolius X T. dubius and T. pratensis X T. dubius, respectively). Analysis of 35 400 expressed loci showed a significantly higher level of transcriptomic additivity compared to old polyploids; only 22% were non-additively expressed in the polyploids, with 5.9% exhibiting transgressive expression (lower or higher expression in the polyploids than in the diploid parents). Among approximately 7400 common orthologous regions (COREs), most loci in both allopolyploids exhibited expression patterns that were vertically inherited from their diploid parents. However, 18% and 20.3% of the loci showed novel expression bias patterns in T. mirus and T. miscellus, respectively. The expression changes of 1500 COREs were explained by cis-regulatory divergence (the condition in which the two parental subgenomes do not interact) between the diploid parents, whereas only about 423 and 461 of the gene expression changes represent trans-effects (the two parental subgenomes interact) in T. mirus and T. miscellus, respectively. The low degree of both non-additivity and trans-effects on gene expression may present the ongoing evolutionary processes of the newly formed Tragopogon polyploids (~80-90 years).


Assuntos
Asteraceae , Tragopogon , Tragopogon/genética , Asteraceae/genética , Diploide , Poliploidia , Evolução Molecular , Genoma de Planta/genética
2.
Front Plant Sci ; 13: 882441, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909764

RESUMO

Ferns are the second largest clade of vascular plants with over 10,000 species, yet the generation of genomic resources for the group has lagged behind other major clades of plants. Transcriptomic data have proven to be a powerful tool to assess phylogenetic relationships, using thousands of markers that are largely conserved across the genome, and without the need to sequence entire genomes. We assembled the largest nuclear phylogenetic dataset for ferns to date, including 2884 single-copy nuclear loci from 247 transcriptomes (242 ferns, five outgroups), and investigated phylogenetic relationships across the fern tree, the placement of whole genome duplications (WGDs), and gene retention patterns following WGDs. We generated a well-supported phylogeny of ferns and identified several regions of the fern phylogeny that demonstrate high levels of gene tree-species tree conflict, which largely correspond to areas of the phylogeny that have been difficult to resolve. Using a combination of approaches, we identified 27 WGDs across the phylogeny, including 18 large-scale events (involving more than one sampled taxon) and nine small-scale events (involving only one sampled taxon). Most inferred WGDs occur within single lineages (e.g., orders, families) rather than on the backbone of the phylogeny, although two inferred events are shared by leptosporangiate ferns (excluding Osmundales) and Polypodiales (excluding Lindsaeineae and Saccolomatineae), clades which correspond to the majority of fern diversity. We further examined how retained duplicates following WGDs compared across independent events and found that functions of retained genes were largely convergent, with processes involved in binding, responses to stimuli, and certain organelles over-represented in paralogs while processes involved in transport, organelles derived from endosymbiotic events, and signaling were under-represented. To date, our study is the most comprehensive investigation of the nuclear fern phylogeny, though several avenues for future research remain unexplored.

3.
Sci Rep ; 9(1): 18181, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796775

RESUMO

Ferns are notorious for possessing large genomes and numerous chromosomes. Despite decades of speculation, the processes underlying the expansive genomes of ferns are unclear, largely due to the absence of a sequenced homosporous fern genome. The lack of this crucial resource has not only hindered investigations of evolutionary processes responsible for the unusual genome characteristics of homosporous ferns, but also impeded synthesis of genome evolution across land plants. Here, we used the model fern species Ceratopteris richardii to address the processes (e.g., polyploidy, spread of repeat elements) by which the large genomes and high chromosome numbers typical of homosporous ferns may have evolved and have been maintained. We directly compared repeat compositions in species spanning the green plant tree of life and a diversity of genome sizes, as well as both short- and long-read-based assemblies of Ceratopteris. We found evidence consistent with a single ancient polyploidy event in the evolutionary history of Ceratopteris based on both genomic and cytogenetic data, and on repeat proportions similar to those found in large flowering plant genomes. This study provides a major stepping-stone in the understanding of land plant evolutionary genomics by providing the first homosporous fern reference genome, as well as insights into the processes underlying the formation of these massive genomes.


Assuntos
Gleiquênias/genética , Genoma de Planta/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , DNA de Plantas/genética , Tamanho do Genoma/genética , Genômica/métodos , Filogenia , Poliploidia , Sequências Repetitivas de Ácido Nucleico/genética
4.
Proc Natl Acad Sci U S A ; 116(34): 17081-17089, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31387975

RESUMO

The avocado, Persea americana, is a fruit crop of immense importance to Mexican agriculture with an increasing demand worldwide. Avocado lies in the anciently diverged magnoliid clade of angiosperms, which has a controversial phylogenetic position relative to eudicots and monocots. We sequenced the nuclear genomes of the Mexican avocado race, P. americana var. drymifolia, and the most commercially popular hybrid cultivar, Hass, and anchored the latter to chromosomes using a genetic map. Resequencing of Guatemalan and West Indian varieties revealed that ∼39% of the Hass genome represents Guatemalan source regions introgressed into a Mexican race background. Some introgressed blocks are extremely large, consistent with the recent origin of the cultivar. The avocado lineage experienced 2 lineage-specific polyploidy events during its evolutionary history. Although gene-tree/species-tree phylogenomic results are inconclusive, syntenic ortholog distances to other species place avocado as sister to the enormous monocot and eudicot lineages combined. Duplicate genes descending from polyploidy augmented the transcription factor diversity of avocado, while tandem duplicates enhanced the secondary metabolism of the species. Phenylpropanoid biosynthesis, known to be elicited by Colletotrichum (anthracnose) pathogen infection in avocado, is one enriched function among tandems. Furthermore, transcriptome data show that tandem duplicates are significantly up- and down-regulated in response to anthracnose infection, whereas polyploid duplicates are not, supporting the general view that collections of tandem duplicates contribute evolutionarily recent "tuning knobs" in the genome adaptive landscapes of given species.


Assuntos
Colletotrichum/fisiologia , DNA Intergênico , Introgressão Genética , Genoma de Planta , Interações Hospedeiro-Patógeno/genética , Magnoliopsida , Persea , Filogenia , Doenças das Plantas , Duplicação Gênica , Magnoliopsida/genética , Magnoliopsida/microbiologia , Persea/genética , Persea/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
5.
PLoS One ; 14(5): e0216228, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31141508

RESUMO

The African spiny mouse, Acomys spp., is capable of scar-free dermal wound healing. Here, we have performed a comprehensive analysis of gene expression throughout wound healing following full-thickness excisional dermal wounds in both Acomys cahirinus and Mus musculus. Additionally, we provide an annotated, de novo transcriptome assembly of A. cahirinus skin and skin wounds. Using a novel computational comparative RNA-Seq approach along with pathway and co-expression analyses, we identify enrichment of regeneration associated genes as well as upregulation of genes directly related to muscle development or function. Our RT-qPCR data reveals induction of the myogenic regulatory factors, as well as upregulation of embryonic myosin, starting between days 14 and 18 post-wounding in A. cahirinus. In contrast, the myogenic regulatory factors remain downregulated, embryonic myosin is only modestly upregulated, and no new muscle fibers of the panniculus carnosus are generated in M. musculus wounds. Additionally, we show that Col6a1, a key component of the satellite cell niche, is upregulated in A. cahirinus compared to M. musculus. Our data also demonstrate that the macrophage profile and inflammatory response is different between species, with A. cahirinus expressing significantly higher levels of Il10. We also demonstrate differential expression of the upstream regulators Wnt7a, Wnt2 and Wnt6 during wound healing. Our analyses demonstrate that A. cahirinus is capable of de novo skeletal muscle regeneration of the panniculus carnosus following removal of the extracellular matrix. We believe this study represents the first detailed analysis of de novo skeletal muscle regeneration observed in an adult mammal.


Assuntos
Murinae/fisiologia , Músculo Esquelético/fisiologia , Regeneração , Pele , Transcriptoma , Cicatrização , Animais , Camundongos , Murinae/genética , Desenvolvimento Muscular/genética , Miosinas/metabolismo , Regeneração/genética , Proteínas Wnt/metabolismo
6.
Genetics ; 210(3): 883-894, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30213855

RESUMO

Polyploidy has played a pivotal and recurring role in angiosperm evolution. Allotetraploids arise from hybridization between species and possess duplicated gene copies (homeologs) that serve redundant roles immediately after polyploidization. Although polyploidization is a major contributor to plant evolution, it remains poorly understood. We describe an analytical approach for assessing homeolog-specific expression that begins with de novo assembly of parental transcriptomes and effectively (i) reduces redundancy in de novo assemblies, (ii) identifies putative orthologs, (iii) isolates common regions between orthologs, and (iv) assesses homeolog-specific expression using a robust Bayesian Poisson-Gamma model to account for sequence bias when mapping polyploid reads back to parental references. Using this novel methodology, we examine differential homeolog contributions to the transcriptome in the recently formed allopolyploids Tragopogon mirus and T. miscellus (Compositae). Notably, we assess a larger Tragopogon gene set than previous studies of this system. Using carefully identified orthologous regions and filtering biased orthologs, we find in both allopolyploids largely balanced expression with no strong parental bias. These new methods can be used to examine homeolog expression in any tetrapolyploid system without requiring a reference genome.


Assuntos
Biologia Computacional , Poliploidia , Homologia de Sequência do Ácido Nucleico , Transcriptoma/genética , Teorema de Bayes , Evolução Molecular , Ontologia Genética , Inativação Gênica , Loci Gênicos/genética , Anotação de Sequência Molecular , Tragopogon/genética
7.
Proc Natl Acad Sci U S A ; 114(11): E2195-E2204, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28242684

RESUMO

RNA splicing of U12-type introns functions in human cell differentiation, but it is not known whether this class of introns has a similar role in plants. The maize ROUGH ENDOSPERM3 (RGH3) protein is orthologous to the human splicing factor, ZRSR2. ZRSR2 mutations are associated with myelodysplastic syndrome (MDS) and cause U12 splicing defects. Maize rgh3 mutants have aberrant endosperm cell differentiation and proliferation. We found that most U12-type introns are retained or misspliced in rgh3 Genes affected in rgh3 and ZRSR2 mutants identify cell cycle and protein glycosylation as common pathways disrupted. Transcripts with retained U12-type introns can be found in polysomes, suggesting that splicing efficiency can alter protein isoforms. The rgh3 mutant protein disrupts colocalization with a known ZRSR2-interacting protein, U2AF2. These results indicate conserved function for RGH3/ZRSR2 in U12 splicing and a deeply conserved role for the minor spliceosome to promote cell differentiation from stem cells to terminal fates.


Assuntos
Genes de Plantas , Splicing de RNA , RNA Nuclear Pequeno , Zea mays/genética , Processamento Alternativo , Sequência de Aminoácidos , Sequência Conservada , Endosperma/genética , Células Eucarióticas/metabolismo , Regulação da Expressão Gênica de Plantas , Humanos , Íntrons , Mutação , Motivos de Nucleotídeos , Fosforilação , Matrizes de Pontuação de Posição Específica , Transporte Proteico , Isoformas de RNA , Sítios de Splice de RNA , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Zea mays/metabolismo
8.
BMC Evol Biol ; 13: 35, 2013 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-23394592

RESUMO

BACKGROUND: DNA barcoding of land plants has relied traditionally on a small number of markers from the plastid genome. In contrast, low-copy nuclear genes have received little attention as DNA barcodes because of the absence of universal primers for PCR amplification. RESULTS: From pooled-species 454 transcriptome data we identified two variable intron-less nuclear loci for each of two species-rich genera of the Hawaiian flora: Clermontia (Campanulaceae) and Cyrtandra (Gesneriaceae) and compared their utility as DNA barcodes with that of plastid genes. We found that nuclear genes showed an overall greater variability, but also displayed a high level of heterozygosity, intraspecific variation, and retention of ancient alleles. Thus, nuclear genes displayed fewer species-diagnostic haplotypes compared to plastid genes and no interspecies gaps. CONCLUSIONS: The apparently greater coalescence times of nuclear genes are likely to limit their utility as barcodes, as only a small proportion of their alleles were fixed and unique to individual species. In both groups, species-diagnostic markers from either genome were scarce on the youngest island; a minimum age of ca. two million years may be needed for a species flock to be barcoded. For young plant groups, nuclear genes may not be a superior alternative to slowly evolving plastid genes.


Assuntos
Campanulaceae/classificação , Código de Barras de DNA Taxonômico , Magnoliopsida/classificação , Plastídeos/genética , Campanulaceae/genética , Núcleo Celular/genética , DNA de Plantas/genética , Haplótipos , Havaí , Magnoliopsida/genética , Filogeografia
9.
Appl Plant Sci ; 1(6)2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25202552

RESUMO

PREMISE OF THE STUDY: Primers were developed to amplify 12 intron-less, low-copy nuclear genes in the Hawaiian genus Clermontia (Campanulaceae), a suspected tetraploid. • METHODS AND RESULTS: Data from a pooled 454 titanium run of the partial transcriptomes of seven Clermontia species were used to identify the loci of interest. Most loci were amplified and sequenced directly with success in a representative selection of lobeliads even though several of these loci turned out to be duplicated. Levels of variation were comparable to those observed in commonly used plastid and ribosomal markers. • CONCLUSIONS: We found evidence of a genome duplication that likely predates the diversification of the Hawaiian lobeliads. Some genes nevertheless appear to be single-copy and should be useful for phylogenetic studies of Clermontia or the entire Lobelioideae subfamily.

10.
Curr Biol ; 22(3): 248-52, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22264605

RESUMO

The predictability of evolution is debatable, with recent evidence suggesting that outcomes may be constrained by gene interaction networks [1]. Whole-genome duplication (WGD; polyploidization-ubiquitous in plant evolution [2]) provides the opportunity to evaluate the predictability of genome reduction, a pervasive feature of evolution [3, 4]. Repeated patterns of genome reduction appear to have occurred via duplicated gene (homeolog) loss in divergent species following ancient WGD [5-9], with evidence for preferential retention of duplicates in certain gene classes [8-10]. The speed at which these patterns arise is unknown. We examined presence/absence of 70 homeologous loci in 59 Tragopogon miscellus plants from five natural populations of independent origin; this allotetraploid arose ~80 years ago via hybridization between diploid parents and WGD [11]. Genes were repeatedly retained or lost in clusters, and the gene ontology categories of the missing genes correspond to those lost after ancient WGD in the same family (Asteraceae; sunflower family) [6] and with gene dosage sensitivity [8]. These results provide evidence that the outcomes of WGD are predictable, even in 40 generations, perhaps due to the connectivity of gene products [8, 10, 12]. The high frequency of single-allele losses detected and low frequency of changes fixed within populations provide evidence for ongoing evolution.


Assuntos
Evolução Molecular , Deleção de Genes , Duplicação Gênica , Poliploidia , Tragopogon/genética , Genoma de Planta
11.
Curr Biol ; 21(7): 551-6, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21419627

RESUMO

New hybrid species might be expected to show patterns of gene expression intermediate to those shown by parental species. "Transcriptomic shock" may also occur, in which gene expression is disrupted; this may be further modified by whole genome duplication (causing allopolyploidy). "Shock" can include instantaneous partitioning of gene expression between parental copies of genes among tissues. These effects have not previously been studied at a population level in a natural allopolyploid plant species. Here, we survey tissue-specific expression of 144 duplicated gene pairs derived from different parental species (homeologs) in two natural populations of 40-generation-old allotetraploid Tragopogon miscellus (Asteraceae) plants. We compare these results with patterns of allelic expression in both in vitro "hybrids" and hand-crossed F(1) hybrids between the parental diploids T. dubius and T. pratensis, and with patterns of homeolog expression in synthetic (S(1)) allotetraploids. Partitioning of expression was frequent in natural allopolyploids, but F(1) hybrids and S(1) allopolyploids showed less partitioning of expression than the natural allopolyploids and the in vitro "hybrids" of diploid parents. Our results suggest that regulation of gene expression is relaxed in a concerted manner upon hybridization, and new patterns of partitioned expression subsequently emerge over the generations following allopolyploidization.


Assuntos
Regulação da Expressão Gênica de Plantas , Hibridização Genética , Poliploidia , Tragopogon/genética , Transcriptoma , Evolução Biológica , DNA de Plantas/genética , Perfilação da Expressão Gênica , Genes Duplicados , Genoma de Planta , Reação em Cadeia da Polimerase
12.
Plant Biotechnol J ; 8(7): 835-44, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20408988

RESUMO

Rice transcription factor RF2a binds to the BoxII cis element of the promoter of rice tungro bacilliform virus and activates promoter expression. The acidic acid-rich domain of RF2a is a transcription activator and has been partially characterized (Dai et al., 2003). The RF2a acidic domain (A; amino acids 49-116) was fused with the synthetic zinc finger ZF-TF 2C7 and was co-introduced with a reporter gene into transgenic Arabidopsis plants. Expression of the reporter gene was increased up to seven times by the effector. In transient assays in tobacco BY-2 protoplasts, we identified a subdomain comprising amino acids 56-84 (A5) that was equally as effective as an activator as the entire acidic domain. A chemically inducible system was used to show determined that A and A5 domains are equally as effective in transcription activation as the well-characterized VP16 activation domain. Bioinformatics analyses revealed that the A5 domain is present only in b-ZIP transcription factors. In dicots, the A domain contains an insertion of four amino acids that is not present in monocot proteins. The A5 domain, and similar domains in other b-ZIP transcription factors, is predicted to form an anti-parallel beta sheet structure.


Assuntos
Oryza/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Biologia Computacional , Dados de Sequência Molecular , Oryza/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , RNA de Plantas/genética , Alinhamento de Sequência , Análise de Sequência de Proteína , Nicotiana/metabolismo , Transativadores/genética , Fatores de Transcrição/genética , Transformação Genética , Tungrovirus/genética
13.
Mol Ecol ; 19 Suppl 1: 132-46, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20331776

RESUMO

Tragopogon miscellus (Asteraceae) is an evolutionary model for the study of natural allopolyploidy, but until now has been under-resourced as a genetic model. Using 454 and Illumina expressed sequence tag sequencing of the parental diploid species of T. miscellus, we identified 7782 single nucleotide polymorphisms that differ between the two progenitor genomes present in this allotetraploid. Validation of a sample of 98 of these SNPs in genomic DNA using Sequenom MassARRAY iPlex genotyping confirmed 92 SNP markers at the genomic level that were diagnostic for the two parental genomes. In a transcriptome profile of 2989 SNPs in a single T. miscellus leaf, using Illumina sequencing, 69% of SNPs showed approximately equal expression of both homeologs (duplicate homologous genes derived from different parents), 22% showed apparent differential expression and 8.5% showed apparent silencing of one homeolog in T. miscellus. The majority of cases of homeolog silencing involved the T. dubius SNP homeolog (164/254; 65%) rather than the T. pratensis homeolog (90/254). Sequenom analysis of genomic DNA showed that in a sample of 27 of the homeologs showing apparent silencing, 23 (85%) were because of genomic homeolog loss. These methods could be applied to any organism, allowing efficient and cost-effective generation of genetic markers.


Assuntos
Evolução Molecular , Genes Duplicados , Genoma de Planta , Análise de Sequência de DNA/métodos , Tragopogon/genética , DNA de Plantas/genética , Etiquetas de Sequências Expressas , Biblioteca Gênica , Genótipo , Polimorfismo de Nucleotídeo Único , Poliploidia , Alinhamento de Sequência
14.
Genome Res ; 16(10): 1241-51, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16902087

RESUMO

Maize (Zea mays or corn), both a major food source and an important cytogenetic model, evolved from a tetraploid that arose about 4.8 million years ago (Mya). As a result, maize has extensive duplicated regions within its genome. We have sequenced the two copies of one such region, generating 7.8 Mb of sequence spanning 17.4 cM of the short arm of chromosome 1 and 6.6 Mb (25.6 cM) from the long arm of chromosome 9. Rice, which did not undergo a similar whole genome duplication event, has only one orthologous region (4.9 Mb) on the short arm of chromosome 3, and can be used as reference for the maize homoeologous regions. Alignment of the three regions allowed identification of syntenic blocks, and indicated that the maize regions have undergone differential contraction in genic and intergenic regions and expansion by the insertion of retrotransposable elements. Approximately 9% of the predicted genes in each duplicated region are completely missing in the rice genome, and almost 20% have moved to other genomic locations. Predicted genes within these regions tend to be larger in maize than in rice, primarily because of the presence of predicted genes in maize with larger introns. Interestingly, the general gene methylation patterns in the maize homoeologous regions do not appear to have changed with contraction or expansion of their chromosomes. In addition, no differences in methylation of single genes and tandemly repeated gene copies have been detected. These results, therefore, provide new insights into the diploidization of polyploid species.


Assuntos
Cromossomos de Plantas/genética , Evolução Molecular , Genes Duplicados/genética , Ploidias , Zea mays/genética , Sequência de Bases , Mapeamento Cromossômico , Modelos Genéticos , Dados de Sequência Molecular , Sequências Repetitivas de Ácido Nucleico/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Sintenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA