Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 54: 101329, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34454092

RESUMO

OBJECTIVE: The loss of forkhead box protein O1 (FoxO1) signaling in response to metabolic stress contributes to the etiology of type II diabetes, causing the dedifferentiation of pancreatic beta cells to a cell type reminiscent of endocrine progenitors. Lack of methods to easily model this process in vitro, however, have hindered progress into the identification of key downstream targets and potential inhibitors. We therefore aimed to establish such an in vitro cellular dedifferentiation model and apply it to identify novel agents involved in the maintenance of beta-cell identity. METHODS: The murine beta-cell line, Min6, was used for primary experiments and high-content screening. Screens encompassed a library of small-molecule drugs representing the chemical and target space of all FDA-approved small molecules with an automated immunofluorescence readout. Validation experiments were performed in a murine alpha-cell line as well as in primary murine and human diabetic islets. Developmental effects were studied in zebrafish and C. elegans models, while diabetic db/db mouse models were used to elucidate global glucose metabolism outcomes. RESULTS: We show that short-term pharmacological FoxO1 inhibition can model beta-cell dedifferentiation by downregulating beta-cell-specific transcription factors, resulting in the aberrant expression of progenitor genes and the alpha-cell marker glucagon. From a high-content screen, we identified loperamide as a small molecule that can prevent FoxO inhibitor-induced glucagon expression and further stimulate insulin protein processing and secretion by altering calcium levels, intracellular pH, and FoxO1 localization. CONCLUSIONS: Our study provides novel models, molecular targets, and drug candidates for studying and preventing beta-cell dedifferentiation.


Assuntos
Proteína Forkhead Box O1/metabolismo , Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Adulto , Animais , Desdiferenciação Celular , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade
2.
J Acquir Immune Defic Syndr ; 87(5): 1154-1160, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34229328

RESUMO

BACKGROUND: Recent advances made in cell and gene therapies for cancer suggest that they represent plausible strategies to cure HIV. However, the health risks and constraints associated with these therapies require a deeper understanding of the expectations of such treatments among people living with HIV (PLWH). METHODS: We conducted 15 semistructured in-depth interviews among patients from 2 HIV units in Switzerland. After a conversation about their perceptions of research on HIV therapies, participants were provided with a trial description using a gene-modified cell therapy as a potentially curative approach. They were invited to discuss how they might consider participation in the trial. Content analysis was performed to identify core themes. RESULTS: Participants perceived the trial as burdensome and uncertain. Most were aware that cure was not guaranteed, and 6 of the 15 considered that they would participate. Two main concerns were expressed about potential participation: (1) the impact on the professional life and fear to be stigmatized because of this and (2) the fact that stopping antiretroviral treatment would challenge the balance currently achieved in their lives. The decision to participate would depend on their understanding of the trial, the availability of sufficient information, and the relationship with health care professionals. CONCLUSION: Involving PLWH in early stages of research would be crucial to improve their understanding of gene-modified cell therapies. It could also help adapt trials to address key factors, including the anticipation of stigma, which may discourage PLWH from participating in treatment research.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Genética/métodos , Infecções por HIV/terapia , Experimentação Humana Terapêutica , Humanos , Pesquisa Qualitativa , Suíça
3.
Antioxid Redox Signal ; 32(9): 618-635, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-31931619

RESUMO

Aims: Nicotinamide adenine dinucleotide phosphate oxidases (NOX-es) produce reactive oxygen species and modulate ß-cell insulin secretion. Islets of type 2 diabetic subjects present elevated expression of NOX5. Here, we sought to characterize regulation of NOX5 expression in human islets in vitro and to uncover the relevance of NOX5 in islet function in vivo using a novel mouse model expressing NOX5 in doxycycline-inducible, ß-cell-specific manner (RIP/rtTA/NOX5 mice). Results:In situ hybridization and immunohistochemistry employed on pancreatic sections demonstrated NOX5 messenger ribonucleic acid (mRNA) and protein expressions in human islets. In cultures of dispersed islets, NOX5 protein was observed in somatostatin-positive (δ) cells in basal (2.8 mM glucose) conditions. Small interfering ribonucleic acid (siRNA)-mediated knockdown of NOX5 in human islets cultured in basal glucose concentrations resulted in diminished glucose-induced insulin secretion (GIIS) in vitro. However, when islets were preincubated in high (16.7 mM) glucose media for 12 h, NOX5 appeared also in insulin-positive (ß) cells. In vivo, mice with ß-cell NOX5 expression developed aggravated impairment of GIIS compared with control mice when challenged with 14 weeks of high-fat diet. Similarly, in vitro palmitate preincubation resulted in more severe reduction of insulin release in islets of RIP/rtTA/NOX5 mice compared with their control littermates. Decreased insulin secretion was most distinct in response to theophylline stimulation, suggesting impaired cyclic adenosine monophosphate (cAMP)-mediated signaling due to increased phosphodiesterase activation. Innovation and Conclusions: Our data provide the first insight into the complex regulation and function of NOX5 in islets implying an important role for NOX5 in δ-cell-mediated intraislet crosstalk in physiological circumstances but also identifying it as an aggravating factor in ß-cell failure in diabetic conditions.


Assuntos
Ilhotas Pancreáticas/metabolismo , NADPH Oxidase 5/genética , Animais , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Feminino , Humanos , Secreção de Insulina/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , NADPH Oxidase 5/metabolismo
4.
J Endocrinol ; 229(2): 123-32, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26931137

RESUMO

The aim of this study was to evaluate the location of PP and δ cells in relation to the vascularization within human pancreatic islets. To this end, pancreas sections were analysed by immunofluorescence using antibodies against endocrine islet and endothelial cells. Staining in different islet areas corresponding to islet cells adjacent or not to peripheral or central vascular channels was quantified by computerized morphometry. As results, α, PP and δ cells were preferentially found adjacent to vessels. In contrast to α cells, which were evenly distributed between islet periphery and intraislet vascular channels, PP and δ cells had asymmetric and opposite distributions: PP staining was higher and somatostatin staining was lower in the islet periphery than in the area around intraislet vascular channels. Additionally, frequencies of PP and δ cells were negatively correlated in the islets. No difference was observed between islets from the head and the tail of the pancreas, and from type 2 diabetic and non-diabetic donors. In conclusion, the distribution of δ cells differs from that of PP cells in human islets, suggesting that vessels at the periphery and at the centre of islets drain different hormonal cocktails.


Assuntos
Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Polipeptídeo Pancreático/citologia , Células Secretoras de Polipeptídeo Pancreático/metabolismo , Células Secretoras de Somatostatina/citologia , Células Secretoras de Somatostatina/metabolismo , Adolescente , Adulto , Idoso , Imunofluorescência , Humanos , Pessoa de Meia-Idade , Polipeptídeo Pancreático/metabolismo , Somatostatina/metabolismo , Distribuição Tecidual , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA